"

2021

  • Borboudakis, Giorgos, and Ioannis Tsamardinos. “Extending Greedy Feature Selection Algorithms To Multiple Solutions”. Data Mining And Knowledge Discovery. doi:10.1007/s10618-020-00731-7.
    AbstractURLBibTeXEndNoteDOIBibSonomyDownload
  • Borboudakis, G, and I Tsamardinos. “Extending Greedy Feature Selection Algorithms To Multiple Solutions”. Data Mining And Knowledge Discovery to appear.
    BibTeXEndNoteBibSonomyDownload

2020

  • Tsagris, Michail, Zacharias Papadovasilakis, Kleanthi Lakiotaki, and Ioannis Tsamardinos. “The Γ-Omp Algorithm For Feature Selection With Application To Gene Expression Data”. Ieee/acm Transactions On Computational Biology And Bioinformatics. doi:10.1109/TCBB.2020.3029952.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Tsourtis, A, Y Pantazis, and I Tsamardinos. “Inference Of Stochastic Dynamical Systems From Cross-Sectional Population Data”. Arxiv:2012.05055V1 [Cs.lg] 9 Dec 2020. doi:arXiv:2012.05055v1 [cs.LG] 9 Dec 2020.
    AbstractBibTeXEndNoteDOIBibSonomyDownload
  • Pantazis, Yannis, Christos Tselas, Kleanthi Lakiotaki, Vincenzo Lagani, and ioannis Tsamardinos. “Latent Feature Representations For Human Gene Expression Data Improve Phenotypic Predictions”. Ieee. doi:10.1109/BIBM49941.2020.9313286.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Biza, K., I. Tsamardinos, and S. Triantafillou. “Tuning Causal Discovery Algorithms”. Proceedings Of The Tenth International Conference On Probabilistic Graphical Models, In Pmlr. https://pgm2020.cs.aau.dk/wp-content/uploads/2020/09/biza20.pdf.
    AbstractURLBibTeXEndNoteBibSonomyDownload
  • Karagiannaki, Ioulia, Yannis Pantazis, Ekaterini Chatzaki, and Ioannis Tsamardinos. “Pathway Activity Score Learning For Dimensionality Reduction Of Gene Expression Data”. G" "Tsoumakas, "Manolopoulos, Y", and "Matwin, S". Discovery Science. Ds 2020. Lecture Notes In Computer Science 12323: 246-261. doi:https://doi.org/10.1007/978-3-030-61527-7_17.
    AbstractURLBibTeXEndNoteDOIBibSonomyDownload
  • Tsamardinos, Ioannis, George Fanourgakis, Elissavet Greasidou, Emmanuel Klontzas, Konstantinos Gkagkas, and George Froudakis. “An Automated Machine Learning Architecture For The Accelerated Prediction Of Metal-Organic Frameworks Performance In Energy And Environmental Applications”. Microporous And Mesoporos Materials 300. doi:https://doi.org/10.1016/j.micromeso.2020.110160.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Verrou, Klio-Maria, Ioannis Tsamardinos, and Georgios Papoutsoglou. “Learning Pathway Dynamics From Single‐Cell Proteomic Data: A Comparative Study”. Cytometry Part A, Special Issue: Machine Learning For Single Cell Data 97, no. 3. doi:https://doi.org/10.1002/cyto.a.23976.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Xanthopoulos, Iordanis, Ioannis Tsamardinos, Vassilis Christophides, Eric Simon, and Alejandro Salinger. “Putting The Human Back In The Automl Loop.”. In Edbt/icdt Workshops, Alexandra Poulovassilis, Auber, David, Bikakis, Nikos, Chrysanthis, Panos K., Papastefanatos, George, Sharaf, Mohamed, Pelekis, Nikos, et al.. Vol. 2578. Ceur Workshop Proceedings, CEUR-WS.org, 2020. http://ceur-ws.org/Vol-2578/ETMLP5.pdf.
    AbstractURLBibTeXEndNoteBibSonomyDownload
  • Malliaraki, Niki, Kleanthi Lakiotaki, Rodanthi Vamvoukaki, George Notas, Ioannis Tsamardinos, Marilena Kampa, and Elias Castanas. “Translating Vitamin D Transcriptomics To Clinical Evidence: Analysis Of Data In Asthma And Chronic Obstructive Pulmonary Disease, Followed By Clinical Data Meta-Analysis”. The Journal Of Steroid Biochemistry And Molecular Biology 197: 1-14. doi:https://doi.org/10.1016/j.jsbmb.2019.105505.
    AbstractURLBibTeXEndNoteDOIBibSonomyDownload

2019

  • Ewing, Ewoud, Lara Kular, Sunjay J. Fernandes, Nestoras Karathanasis, Vincenzo Lagani, Sabrina Ruhrmann, Ioannis Tsamardinos, et al. “Combining Evidence From Four Immune Cell Types Identifies Dna Methylation Patterns That Implicate Functionally Distinct Pathways During Multiple Sclerosis Progression”. Ebiomedicine 43: 411--423. doi:10.1016/j.ebiom.2019.04.042.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Borboudakis, Giorgos, and Ioannis Tsamardinos. “Forward-Backward Selection With Early Dropping”. Isabelle Guyon. Journal Of Machine Learning Research 20, no. 8: 1-39. http://jmlr.org/papers/volume20/17-334/17-334.pdf.
    AbstractURLBibTeXEndNoteBibSonomy
  • Pantazis, Yannis, and Ioannis Tsamardinos. “A Unified Approach For Sparse Dynamical System Inference From Temporal Measurements”. Bioinformatics. doi:10.1093/bioinformatics/btz065.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Ferreirós-Vidal, Isabel, Thomas Carroll, Tianyi Zhang, Vincenzo Lagani, Ricardo N. Ramirez, Elizabeth Ing-Simmons, Alicia Garcia, et al. “Feedforward Regulation Of Myc Coordinates Lineage-Specific With Housekeeping Gene Expression During B Cell Progenitor Cell Differentiation”. Plos Biology 17, no. 4: 1-28. doi:10.1371/journal.pbio.2006506.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Loos, Maria S., Reshmi Ramakrishnan, Wim Vranken, Alexandra Tsirigotaki, Evrydiki-Pandora Tsare, Valentina Zorzini, Jozefien De Geyter, et al. “Structural Basis Of The Subcellular Topology Landscape Of Escherichia Coli”. Frontiers In Microbiology 10. doi:10.3389/fmicb.2019.01670.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Lakiotaki, Kleanthi, George Georgakopoulos, Elias Castanas, Oluf Dimitri Røe, Giorgos Borboudakis, and Ioannis Tsamardinos. “A Data Driven Approach Reveals Disease Similarity On A Molecular Level”. Npj Systems Biology And Applications 5, no. 39: 1-10. doi:10.1038/s41540-019-0117-0.
    AbstractURLBibTeXEndNoteDOIBibSonomyDownload
  • Fernandes Sunja, Jude, Hiromasa Morikawa, Ewoud Ewing, Sabrina Ruhrmann, Narayan Joshi Rubin, Vincenzo Lagani, Nestoras Karathanasis, et al. “Non-Parametric Combination Analysis Of Multiple Data Types Enables Detection Of Novel Regulatory Mechanisms In T Cells Of Multiple Sclerosis Patients”. Nature Scientific Reports 9, no. 11996. doi:10.1038/s41598-019-48493-7.
    AbstractURLBibTeXEndNoteDOIBibSonomyDownload
  • Tsagris, M, and I Tsamardinos. “Feature Selection With The R Package Mxm”. F1000Research 7: 1505. doi:https://doi.org/10.12688/f1000research.16216.2.
    AbstractBibTeXEndNoteDOIBibSonomy
  • Papoutsoglou, Georgios, Vincenzo Lagani, Angelika Schmidt, Konstantinos Tsirlis, David-Gomez Cabrero, Jesper Tegner, and Ioannis Tsamardinos. “Challenges In The Multivariate Analysis Of Mass Cytometry Data: The Effect Of Randomization”. Cytometry Part A. doi:https://doi.org/10.1002/cyto.a.23908.
    AbstractURLBibTeXEndNoteDOIBibSonomy

2018

  • Tsagris, Michail, Giorgos Borboudakis, Vincenzo Lagani, and Ioannis Tsamardinos. “Constraint-Based Causal Discovery With Mixed Data”. International Journal Of Data Science And Analytics 6, no. 1: 19-30. doi:10.1007/s41060-018-0097-y.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Tsagris, Michail, Vincenzo Lagani, and Ioannis Tsamardinos. “Feature Selection For High-Dimensional Temporal Data”. Bmc Bioinformatics 19, no. 17: 1-14. doi:10.1186/s12859-018-2023-7.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Tsirlis, Konstantinos, Vincenzo Lagani, Sofia Triantafillou, and Ioannis Tsamardinos. “On Scoring Maximal Ancestral Graphs With The Maxtextendashmin Hill Climbing Algorithm”. International Journal Of Approximate Reasoning 102: 74-85. doi:10.1016/j.ijar.2018.08.002.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Tsagris, Michail. “Bayesian Network Learning With The Pc Algorithm: An Improved And Correct Variation”. Applied Artificial Intelligence 33, no. 2: 101-123. doi:10.1080/08839514.2018.1526760.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Tsamardinos, Ioannis, Elissavet Greasidou, and Giorgos Borboudakis. “Bootstrapping The Out-Of-Sample Predictions For Efficient And Accurate Cross-Validation”. Machine Learning 107, no. 12: 1895--1922. doi:10.1007/s10994-018-5714-4.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Tsamardinos, Ioannis, Giorgos Borboudakis, Pavlos Katsogridakis, Polyvios Pratikakis, and Vassilis Christophides. “A Greedy Feature Selection Algorithm For Big Data Of High Dimensionality”. Machine Learning 108, no. 2: 149-202. doi:10.1007/s10994-018-5748-7.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Lakiotaki, Kleanthi, Nikolaos Vorniotakis, Michail Tsagris, Georgios Georgakopoulos, and Ioannis Tsamardinos. “Biodataome: A Collection Of Uniformly Preprocessed And Automatically Annotated Datasets For Data-Driven Biology”. Database 2018, no. bay011: 1-14. doi:10.1093/database/bay011.
    AbstractBibTeXEndNoteDOIBibSonomy

2017

  • Papoutsoglou, Georgios, Giorgos Athineou, Vincenzo Lagani, Iordanis Xanthopoulos, Angelika Schmidt, Szabolcs Éliás, Jesper Tegnér, and Ioannis Tsamardinos. “Scenery: A Web Application For (Causal) Network Reconstruction From Cytometry Data”. Nucleic Acids Research 45: W270-W275. doi:10.1093/nar/gkx448.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Triantafillou, Sofia, Vincenzo Lagani, Christina Heinze-Deml, Angelika Schmidt, Jesper Tegner, and Ioannis Tsamardinos. “Predicting Causal Relationships From Biological Data: Applying Automated Causal Discovery On Mass Cytometry Data Of Human Immune Cells”. Nature Scientific Reports 7, no. 12724. doi:10.1038/s41598-017-08582-x.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Orfanoudaki, Georgia, Maria Markaki, Katerina Chatzi, Ioannis Tsamardinos, and Anastassios Economou. “Maturep: Prediction Of Secreted Proteins With Exclusive Information From Their Mature Regions”. Nature Scientific Reports 7, no. 1: 3263. doi:10.1038/s41598-017-03557-4.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Lagani, Vincenzo, Giorgos Athineou, Alessio Farcomeni, Michail Tsagris, and Ioannis Tsamardinos. “Feature Selection With The R Package Mxm: Discovering Statistically Equivalent Feature Subsets”. Journal Of Statistical Software 80, no. 7. doi:10.18637/jss.v080.i07.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Tsirlis, K, V Lagani, S Triantafillou, and I Tsamardinos. “On Scoring Maximal Ancestral Graphs With The Max-Min Hill Climbing Algorithm”. In, 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Workshop on Causal Discovery (KDD), 2017. http://nugget.unisa.edu.au/CD2017/papersonly/maxmin-r0.pdf.
    AbstractURLBibTeXEndNoteBibSonomy
  • Tsagris, M, G Borboudakis, V Lagani, and I Tsamardinos. “Constraint-Based Causal Discovery With Mixed Data”. In, 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Workshop on Causal Discovery (KDD), 2017. http://nugget.unisa.edu.au/CD2017/papersonly/constraint-based-causal-r1.pdf.
    AbstractURLBibTeXEndNoteBibSonomyDownload

2016

  • Charonyktakis, Paulos, Maria Plakia, Ioannis Tsamardinos, and Maria Papadopouli. “On User-Centric Modular Qoe Prediction For Voip Based On Machine-Learning Algorithms”. Ieee Transactions On Mobile Computing. doi:10.1109/TMC.2015.2461216.
    BibTeXEndNoteDOIBibSonomy
  • Goveia, Jermaine, Andreas Pircher, Lena-Christin Conradi, Joanna Kalucka, Vincenzo Lagani, Mieke Dewerchin, Guy Eelen, Ralph J DeBerardinis, Ian D Wilson, and Peter Carmeliet. “Meta-Analysis Of Clinical Metabolic Profiling Studies In Cancer: Challenges And Opportunities”. Embo Molecular Medicine. doi:10.15252/EMMM.201606798.
    BibTeXEndNoteDOIBibSonomy
  • Karathanasis, N, I Tsamardinos, and V Lagani. “Omicsnpc: Applying The Nonparametric Combination Methodology To The Integrative Analysis Of Heterogeneous Omics Data”. Plos One. doi:10.1371/journal.pone.0165545.
    BibTeXEndNoteDOIBibSonomy
  • Lagani, Vincenzo, Sofia Triantafillou, Gordon Ball, Jesper Tegner, and Ioannis Tsamardinos. “Probabilistic Computational Causal Discovery For Systems Biology”. Uncertainty In Biology. http://link.springer.com/chapter/10.1007/978-3-319-21296-8_3.
    URLBibTeXEndNoteBibSonomy
  • Athineou, G., G. Papoutsoglou, S. Triantafullou, I Basdekis, V. Lagani, and I. Tsamardinos. “Scenery: A Web-Based Application For Network Reconstruction And Visualization Of Cytometry Data.”. Accepted For Publication On The 10Th International Conference On Practical Applications Of Computational Biology & Bioinformatics (Pacbb 2016). doi:10.1007/978-3-319-40126-3_21.
    AbstractURLBibTeXEndNoteDOIBibSonomy
  • Triantafillou, Sofia, and Ioannis Tsamardinos. “Score Based Vs Constraint Based Causal Learning In The Presence Of Confounders”. In, 2016. http://www.its.caltech.edu/~fehardt/UAI2016WS/papers/Triantafillou.pdf.
    AbstractURLBibTeXEndNoteBibSonomyDownload
  • Borboudakis, Giorgos, and Ioannis Tsamardinos. “Towards Robust And Versatile Causal Discovery Forbusiness Applications”. In, 2016. https://www.kdd.org/kdd2016/papers/files/rpp1045-borboudakisA.pdf.
    AbstractURLBibTeXEndNoteBibSonomyDownload
  • Roumpelaki, Anna, Giorgos Borboudakis, Sofia Triantafillou, and Ioannis Tsamardinos. “Marginal Causal Consistency In Constraint-Based Causal Learning”. In, 2016. http://www.its.caltech.edu/~fehardt/UAI2016WS/papers/Roumpelaki.pdf.
    AbstractURLBibTeXEndNoteBibSonomyDownload
  • Lagani, Vincenzo, Argyro D. Karozou, David Gomez-Cabrero, Gilad Silberberg, and Ioannis Tsamardinos. “A Comparative Evaluation Of Data-Merging And Meta-Analysis Methods For Reconstructing Gene-Gene Interactions”. Bmc Bioinformatics no. S5. doi:10.1186/s12859-016-1038-1.
    URLBibTeXEndNoteDOIBibSonomyDownload

2015

  • Tsamardinos, Ioannis, Michail Tsagris, and Vincenzo Lagani. “Feature Selection For Longitudinal Data”. Proceedings Of The 10Th Conference Of The Hellenic Society For Computational Biology & Bioinformatics (Hscbb15) no. 1.
    BibTeXEndNoteBibSonomy
  • Triantafillou, Sofia, and Ioannis Tsamardinos. “Constraint-Based Causal Discovery From Multiple Interventions Over Overlapping Variable Sets”. Journal Of Machine Learning Research. http://arxiv.org/abs/1403.2150.
    AbstractURLBibTeXEndNoteBibSonomy
  • Borboudakis, Giorgos, and Ioannis Tsamardinos. “Bayesian Network Learning With Discrete Case-Control Data.”. Uncertainty In Artificial Intelligence (Uai). http://auai.org/uai2015/proceedings/papers/188.pdf.
    AbstractURLBibTeXEndNoteBibSonomy

2014

  • Papagiannopoulou, Christina, Grigorios Tsoumakas, and Ioannis Tsamardinos. “Discovering And Exploiting Entailment Relationships In Multi-Label Learning”. Acm Sigkdd Conference On Knowledge Discovery And Data Mining 2015 (Kdd). doi:doi.org/10.1145/2783258.2783302.
    AbstractURLBibTeXEndNoteDOIBibSonomy
"