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Democritus said that he 
would rather discover a 
single cause than be the 

king of Persia 
 
 

“Beyond such discarded fundamentals 
as ‘matter’ and ‘force’ lies still another 
fetish amidst the inscrutable arcana of 
modern science, namely the category of 
cause and effect” 

[K. Pearson] 



What is causality? 

• What do you understand when I say : 

–  smoking causes lung cancer? 



What is (probabilistic) causality? 

• What do you understand when I say : 

–  smoking causes lung cancer? 

 

• A causes B:  
– A causally affects B 

– Probabilistically 

– Intervening onto values of A will affect the distribution 
of B 

– in some appropriate context 



Statistical Association  
(Unconditional Dependency) 

• Dep( X, Y |  ) 
 

• X and Y are associated 
– Observing the value of X may change the conditional 

distribution of the (observed) values of Y: P(Y | X)  P(Y) 
– Knowledge of X provides information for Y 
– Observed X is predictive for observed Y and vice versa 
– Knowing X changes our beliefs for the distribution of Y 

 
– Makes no claims about the distribution of Y, if instead of 

observing, we intervene on the values of X 

 
• Several means for measuring it 



• Yellow teeth and lung cancer are associated 

 

• Can I bleach my teeth and reduce the 
probability of getting lung cancer? 

 

• Is Smoking really causing Lung Cancer? 

Association is NOT Causation 



BUT 

“If A and B are correlated, A causes 
B OR B causes A OR they share 
a latent common cause“ 

[Hans Reichenbach] 



Is Smoking Causing Lung Cancer? 
All possible models* 

*assuming: 
1. Smoking precedes Lung Cancer 
2. No feedback cycles 
3. Several hidden common causes can be modeled 

by a single hidden common cause 

Smoking 
Lung 

Cancer 

Smoking 
Lung 

Cancer 

common 
cause 

Smoking 
Lung 

Cancer 

common 
cause 



A way to learn causality 

1. Take 200 people 

2. Randomly split them in control and 

treatment groups 

3. Force control group to smoke, force 

treatment group not to smoke 
4. Wait until they are 60 years old 
5. Measure correlation 

[ Randomized Control Trial  ] 
[Sir Ronald Fisher] 



Manipulation 
All possible models* 

Smoking 
Lung 

Cancer 

Smoking 
Lung 

Cancer 

common 
cause 

Smoking 
Lung 

Cancer 

common 
cause RCT 

RCT 

RCT 



Manipulation removes other causes  

All possible models* 

Smoking 
Lung 

Cancer 

Smoking 
Lung 

Cancer 

common 
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Smoking 
Lung 

Cancer 

common 
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RCT 



Manipulation removes other causes  

All possible models* 

Smoking 
Lung 

Cancer 

Smoking 
Lung 

Cancer 

common 
cause 

Smoking 
Lung 

Cancer 

common 
cause RCT 

RCT 

RCT 

Association persists 
only when 

relationship is causal 



RCTs are hard 

• Can we learn anything from observational 
data? 

 



RCTs are hard 

“If A and B are correlated, A causes 
B OR B causes A OR they share 
a latent common cause“ 

[Hans Reichenbach] 

• Can we learn anything from observational 
data? 

 



Conditional Association  
(Conditional Dependency) 

• Dep( X, Y | Z) 

 

• X and Y are associated conditioned on Z 

– For some values of Z (some context) 

– Knowledge of X still provides information for Y 

– Observed X is still predictive for observed Y and vice versa 

 

• Statistically estimable 



Conditioning and Causality 

Burglar Earthquake 

Alarm 

Call 

[example by Judea Pearl] 



Conditioning and Causality 

Burglar Earthquake 

Alarm 

Call 

Dep(Burglar, Call| ) 
 Burglar provides information for Call  



Conditioning and Causality 

Burglar Earthquake 

Alarm 

Call 

Learning the value of 

intermediate and 

common causes 

renders variables 

independent 

Ind (Burglar, Call| Alarm) 
Burglar provides no information for Call once Alarm is known 



Conditioning and Causality 

Burglar Earthquake 

Alarm 

Call 

Ind (Burglar, Earthquake| ) 



Conditioning and Causality 

Burglar Earthquake 

Alarm 

Call 

Ind (Burglar, Earthquake| ) 



Conditioning and Causality 

Burglar Earthquake 

Alarm 

Call 

Dep (Burglar, Earthquake| Alarm) 

Learning the value of 

common effects 

renders variables 

dependent 



Observing data from a causal model 

Smoking 

Yellow Teeth Lung Cancer 

What would you observe? 
• Dep(Lung Cancer, Yellow Teeth| ) 
• Dep(Smoking, Lung Cancer | ) 
• Dep(Lung Cancer, Yellow Teeth | ) 

• Ind(Lung Cancer, Yellow Teeth| Smoking) 



Observing data from a causal model 

Smoking 

Yellow Teeth Lung Cancer 

What would you observe? 
• Dep(Lung Cancer, Yellow Teeth| ) 
• Dep(Smoking, Lung Cancer | ) 
• Dep(Lung Cancer, Yellow Teeth | ) 

• Ind(Lung Cancer, Yellow Teeth| Smoking) 



Observing data from a causal model 

Smoking 

Yellow Teeth Lung Cancer 

What would you observe? 
• Dep(Lung Cancer, Yellow Teeth| ) 
• Dep(Smoking, Lung Cancer | ) 
• Dep(Lung Cancer, Yellow Teeth | ) 

• Ind(Lung Cancer, Yellow Teeth| Smoking) 



Observing data from a causal model 

Smoking 

Yellow Teeth Lung Cancer 

What would you observe? 
• Dep(Lung Cancer, Yellow Teeth| ) 
• Dep(Smoking, Lung Cancer | ) 

• Ind(Lung Cancer, Yellow Teeth | ) 
• Dep(Lung Cancer, Yellow Teeth| Smoking) 



Markov Equivalent Networks 

Smoking 

Yellow Teeth Lung Cancer 

Smoking 

Yellow Teeth Lung Cancer 

Smoking 

Yellow Teeth Lung Cancer 

• Same conditional 
Independencies 

• Same skeleton 
• Same v-structures (subgraphs 

X  Y  Z no X-Z)  



Causal Bayesian Networks* 

Smoking 

Yellow Teeth 

Lung Cancer 

JPD J 
Lung Cancer 

Smoking Yellow 
Teeth 

Yes No 

Yes Yes 0,01 0,04 

Yes No 0,01 0,04 

No Yes 0,000045 0,044955 

No No 0,000855 0,854145 

Graph G 

*almost there 

Assumptions about the nature of causality 
connect the graph G with the observed 
distribution J and allow reasoning 



Causal Markov Condition (CMC) 

 Every variable is (conditionally) independent of its 

non-effects  (non-descendants in the graph) 

given its direct causes (parents) 

Smoking 

Yellow Teeth 

Lung Cancer 

Lung Cancer 

Smoking Yellow 
Teeth 

Yes No 

Yes Yes 0,01 0,04 

Yes No 0,01 0,04 

No Yes 0,000045 0,044955 

No No 0,000855 0,854145 



Causal Markov Condition 

P(Yellow Teeth, Smoking, Lung Cancer) = 
P(Smoking)  
P(Yellow Teeth| Smoking)  
P(Lung Cancer| Smoking)   

Smoking 

Yellow Teeth 

Lung Cancer 



Factorization with the CMC 

P(Smoking) = 0.1 

P(Yellow Teeth|Smoking) = 0.5 
P(Yellow Teeth| Smoking) = 0.05 

P(Lung Cancer|Smoking) = 0.2 
P(Lung Cancer| Smoking) = 0.001 

Smoking 

Yellow Teeth 

Lung Cancer 

P(Yellow Teeth, Smoking, Lung Cancer) = 
P(Smoking)  
P(Yellow Teeth| Smoking)  
P(Lung Cancer| Smoking)   



Using a Causal Bayesian Network 
Smoking 

Yellow-
stained 
Fingers 

Lung  
Cancer 

Levels of 
Protein X 

Medicine Y 

Fatigue 

1. Factorize the jpd 
 

2. Answer questions like: 
1. P(Lung Cancer| Levels of Protein 

X) = ? 
 

2. Ind(Smoking, Fatigue| Levels of 

Protein X)? 
 

3. What will happen if I design a 
drug that blocks the function of 
protein X (predict effect of 

interventions)? 



Bayesian Networks 

I don’t like all these 
assumptions 

I kind of liked reducing 
the parameters of the 

distribution 
Drop the 
Causal part! 



Using a Bayesian Network 
Smoking 

Yellow-stained 
Fingers 

Lung  
Cancer 

Levels of 
Protein X 

Medicine Y 

Fatigue 

1. Factorize the jpd 
 

2. Answer questions like: 
1. P(Lung Cancer| Levels of 

Protein X) = ? 
 

2. Ind(Smoking, Fatigue| 

Levels of Protein X)? 
 
 



Observing a causal model 

Smoking 

Yellow Teeth Lung Cancer 

What would you observe? 
• Dep(Lung Cancer, Yellow Teeth| ) 
• Dep(Smoking, Lung Cancer | ) 
• Dep(Lung Cancer, Yellow Teeth | ) 
• Ind(Lung Cancer, Yellow Teeth| Smoking) 

Raw data 

Subject # Smoking Yellow 
Teeth 

Lung 
Cancer 

1 0 0 0 

2 1 1 0 

3 1 1 0 

4 0 1 0 

5 0 0 0 

6 1 1 0 

7 1 1 1 

8 0 1 0 

9 0 0 0 

10 1 1 0 

11 1 1 0 

. . . . 

. . . . 

. . . . 

10000 1 1 1 



Learning Set of Equivalent Networks 

Test conditional 
independencies in 

data and find a DAG that 

encodes them 

Find the DAG with the 

maximum a posteriori 
probability given the 
data 

Constraint-Based Approach Score-Based (Bayesian) 



Learning the network 

•SGS [Spirtes, Glymour, & Scheines 2000] 

• PC [Spirtes, Glymour, & Scheines 2000] 

• TPDA [Cheng et al., 1997] 

•CPC [Ramsey et al, 2006] 

 

Constraint-Based Approach Bayesian  Approach 

•MMHC [Tsamardinos et al. 2006] 

• CB  [Provan et al. 1995] 

• BENEDICT [Provan and de Campos 2001] 

•ECOS [Kaname et al. 2010] 

Hybrid 

•K2 [Cooper and Herskowitz 1992] 

•GBPS [Spirtes and Meek 1995] 

•GES [Chickering and Meek 2002] 

•Sparse Candidate [Friedman et al.  1999] 

•Optimal Reinsertion [Moore and Wong 

2003] 

•Rec [Xie, X, Geng, Zhi,  JMLR 2008] 

•Exact Algorithms  [Koivisto et al., 2004] , 

[Koivisto, 2006] , [Silander & Myllymaki, 2006]  
 
 
 

Many more!!! 



Assumptions* 

• Tests of Conditional Independences / Scoring 
methods may not be appropriate for the type of 
data at hand 

 
• Faithfulness 
• No feedback cycles 
• No determinism 
• No latent variables 
• No measurement error 
• No averaging effects 

 
 
 

*aka why the algorithms may not work 



Faithfulness 
• ALL conditional (in)dependencies stem from 

the CMC 

Sunscreen 

Time in 
the sun 

+0.5 +0.6 

-0.3 

•Markov Condition does not imply:  
•Ind(Skin Cancer, Sunscreen) 

•Unfaithful if: 
•Ind(Skin Cancer, Sunscreen) Sunscreen 

Time in 
the sun 

Skin Cancer 

Skin Cancer 



Collinearity and Determinism 

• Assume Y and Z are information equivalent (e.g., one-to-
one deterministic relation) 

• Cannot distinguish the two graphs 
• A specific type of violation of Faithfulness 

X Y  

Z 

W 

X Z  

Y 

W 



No Feedback Cycles 

• Studying causes Good Grades causes more studying (at a 
later time!)…  

• Hard to define without explicitly representing time 
• If all relations are linear, we can assume we sample from 

the distribution of the equilibrium of the system when 
external factors are kept constant 
– Path-diagrams (Structural Equation Models with no 

measurement model part) allow such feedback loops 

• If there is feedback and relations are not linear, there may 
be chaos, literally (mathematically) and metaphorically 
 

Studying Good Grades 



No Latent Confounders 

Heat 
(Not recorded) 

Ice cream Polio 

• Dep (Ice Cream, Polio) 
• No CAUSAL Bayesian 

Network on the 
modeled variables 
ONLY captures causal 
relations correctly 
 

• Both Bayesian 
Networks capture 
associations correctly 
(not always the case)  

Ice cream Polio 

Ice cream Polio 



Effects of Measurement Error 

• X, Y, Z the actual physical quantities 
• X , Y , Z  the measured quantities (+ noise) 
• If Y  is measured with more error than X  then 

Dep(X ;W  | Y ) 
 

X Y  

Y  

W 

X  W  

True 
Model 

Y  X   W  
Possible 
Induced 
Model 



Effects of Averaging 

• Almost all omics technologies measure average 
quantities over millions of cells 

• The quantities in the models though refer to 
single-cells 

X Y  W 
True 
Model 

Xi Yi  Wi 

Possibly 
Induced 
Model  



Success Stories 

• Identify genes that cause a phenotype. 
– [Schadt et al., Nature Genetics, 2005] 

• Reconstruct causal pathways. 
– [K. Sachs, et al. Science , (2005)]  

• Identify causal effects. 
– [Maathius et al., Nature Methods, 2010] 

• Predict association among variables never measured 
together. 
– [Tsamardinos et al., JMLR, 2012] 

• Select features that are most predictive of a target variable. 
– [Aliferis et. al., JMLR, 2010 ] 

 
 



An integrative genomics approach to infer causal 
associations between gene expression and disease 

L 

L 

L 

C 

C 

R 

R 

R 

C Causal model 

Reactive model 

Independent model 

L –Locus of DNA variation 
R – gene expression 
C- Phenotype (Omental Fat Pad Mass trait) 
 
Biological knowledge: Nothing causally affects L 



1. Identify loci susceptible for causing the disease 
• 4 QTLs 

2. Identify gene expression traits correlated with the 
disease 
• 440 genes 

3. Identify genes with eQTLs that coincide with the QTLs 
• 113 genes, 267 eQTLs 

4. Identify genes that support causal models 
5. Rank genes by causal effect 

 

An integrative genomics approach to infer causal 
associations between gene expression and disease 

One of them ranked 152 
out of the 440 based on 

mere correlation 



1. Identify loci susceptible for causing the disease 
• 4 QTLs 

2. Identify gene expression traits correlated with the 
disease 
• 440 genes 

3. Identify genes with eQTLs that coincide with the QTLs 
• 113 genes, 267 eQTLs 

4. Identify genes that support causal models 
5. Rank genes by causal effect 

 

An integrative genomics approach to infer causal 
associations between gene expression and disease 

4 of the top ranked genes 
where experimentally 

validated as causal 



Causal Protein-Signaling Networks Derived 
from Multi-parameter Single-Cell Data 

[K. Sachs, et al. Science , (2005)]  

MEK3/6 

MAPKKK 

PLC

Erk1/2 

Mek1/2 

Raf 

PKC 

p38 

Akt 

MAPKKK 

MEK4/7 

JNK 

L 

A 

T Lck 

VAV 
SLP-76 

RAS 

PKA 

CD28 CD3 

PI3K 

LFA-1 

Cytohesin 

Zap70 

PIP3 

PIP2 

JAB-1 

• Protein Signaling Pathways  
    resemble  Causal Bayesian Networks 
• Use Causal Bayesian Networks learning 

to reconstruct a Protein Signaling 
pathway 



PKC 

Raf 

Erk 

Mek 

Plc  

PKA 

Akt 

Jnk P38 

PIP2 

PIP3 

Expected Pathway 

Reported 

Missed 

 15/17 Classic 

 17/17 Reported 

 3 Missed 

Reversed 

  Phospho-Proteins 

  Phospho-Lipids 

  Perturbed in data 

Reconstructed vs. Actual Network 



Predicting causal effects in large-scale 
systems from observational data 

What will happen if you knock down Gene X? 

Gene A Gene B … Gene X 

1 0.1 0.5 1.2 

2 0.56 2.32 0.7 

… 

n 7 0.4 2.4 

Intervention calculus when DAG is Absent 

 

1. For every DAG G  faithful to the data  

2. Causal effect cG  of X on V in DAG  G is 

1. 0, if  V  PaX (G) 
2. coefficient of X  in V∼X + PaX (G), otherwise 

3. Causal effect c of X on V is the minimum of all cG  
 



Predicting causal effects in large-scale 
systems from observational data 

IDA Evaluation 

Rosetta Compendium data: 
• 5,361 genes 
• 234  single-gene deletion mutants* 
• 63 wild-type measurements** 

 
 

Experimental 
Data* 

Rank causal effects 

Take top m percent 

Apply IDA. 

Take top q genes 

Observational 
Data** 

Compare 



Predicting causal effects in large-scale 
systems from observational data 

• m=10% 



Integrative Causal Analysis 

• Make inferences from multiple heterogeneous 
datasets 
– That measure quantities under different experimental 

conditions 
– Measure different (overlapping) sets of quantities 
– In the context of prior knowledge 

 

• General Idea: 
– Find all CAUSAL models that simultaneously fit all 

datasets and are consistent with prior knowledge 
– Reason with the set of all such models 



X Y Z W 
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ρ
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p
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Y X W 

ρ
XW.Y = 0  

? 

Reason with Set of Solutions 

Y-Z 

|ρΧΥ | > | ρΧZ | 
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Y X W 

ρ
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Make Predictions 

Nothing causes X 

Y-Z 

|ρΧΥ | > | ρΧZ | 
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Nothing causes X 

Y-Z 

X Y Z W 

|ρΧΥ | > | ρΧZ | 



X Y Z W 
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X Y Z W 

X Y Z W 

X Y Z W 

X Y Z W 

Z 

ρ
 XW.Z

= 0  
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m

p
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Variables 

Y X W 

ρ
XW.Y = 0  

Further Inductions 

Changing Y will have an effect on Z 

X Y Z W 

Nothing causes X 

|ρΧΥ | > | ρΧZ | 



I Tsamardinos, S Triantafillou and V Lagani,  
Towards Integrative Causal Analysis of Heterogeneous Datasets and Studies,  

Journal of Machine Learning Research, to appear 

Proof-of-concept Results 

Predicted correlation 
A

ct
u

al
 c

o
rr

el
at

io
n

 

20 datasets 

698897 predictions  

98% accuracy  

0.79 R2  between predicted and sample correlation 

vs. 16% for random guessing 

Biological, Financial, Text, 
Medical, Social 



Causality and Feature Selection 

• Question:  Find a minimal set of molecular quantities that 
collectively carries all the information for optimal prediction / 
diagnosis (target variable) (Molecular Signature) 
– Minimal: throw away irrelevant or superfluous features 

– Collectively: May need to consider interactions 

– Optimal: Requires constructing a classification / regression model and 
estimating its performance 

• Answer*:It is the direct causes, the direct effects, and the direct causes 

of the direct effects of the target variable  in the BN (called the Markov 
Blanket in this context) 

 

 

   * Adopting all causal assumptions 



Markov Blanket 
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Markov Blanket Algorithms 

 

• Efficient and accurate algorithms applicable to 
datasets with hundreds of thousands of 
variables 
– Max-Min Markov Blanket, [Tsamardinos, Aliferis, Statnikov, KDD 2003] 

– HITON [Aliferis, Tsamardinos, Statnikov, AMIA 2003] 

– [Aliferis, Statnikov, Tsamardinos, et. al. JMLR 2010] 

 

• State-of-the-art in variable selection  

 



Objective 

•Identifying a set of transcripts able to 
predict IKAROS gene expression.  

•The selected set should be: 

– Maximally informative: able to predict 
IKAROS expression with optimal accuracy 

– Minimal: containing no redundant or 
uninformative transcripts 

 



Data 

• Genome-wide transciptome data from HapMap 
individual of European descent [Montgomery et al., 2010]  

– Lymphoblast cells 

– 60 distinct individuals 

– Approximately. ~140K transcripts 

 

• RKPM values freely available from ArrayExpress 

– www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-197  



Methods 

• Constraint-based, local learning feature selection 
method for identifying multiple signatures  
– [Tsamardinos, Lagani and Pappas, 2012] 

 

• Support Vector Machine (SVM) for providing testable 
predictions  
– [Chang and Lin, 2011] 

 

• Nested cross validation procedure for:  
– setting algorithms’ parameters  

– providing unbiased performance estimations 
– [Statnikov, Aliferis, Tsamardinos, et al., 2005] 



Results 

 

 

• 22 different signatures found to be equally maximally 
predictive  

– Mean Absolute Error: 1.93  

– R2: 0.7159 

– Correlation of predictions and true expressions:  

– 0.8461 (p-value < 0.0001) 

• Example signature: 
– ENST00000246549, ENST00000545189, 

ENST00000265495, ENST00000398483, ENST00000496570 

• Corresponding to genes: 
– FFAR2, ZNF426, ELF2, MRPL48, DNMT3A 



Predicted vs. Observed IKZF1 values 



Beyond This Tutorial 

 
Textbooks: 
• Pearl, J. Causality: models, reasoning and inference (Cambridge University 

Press: 2000). 
• Spirtes, P., Glymour, C. & Scheines, R. Causation, Prediction, and Search. (The 

MIT Press: 2001). 
• Neapolitan, R. Learning Bayesian Networks. (Prentice Hall: 2003). 



Beyond This Tutorial 

 
Different principles for discovering causality 
• Shimizu, S., Hoyer, P.O., Hyvärinen, A. & Kerminen, A. A Linear Non-Gaussian Acyclic 

Model for Causal Discovery. Journal of Machine Learning Research 7, 2003-2030 (2006). 
Hoyer, P., Janzing, D., Mooij, J., Peters, J. & Schölkopf, B. Nonlinear causal discovery with 

additive noise models. Neural Information Processing Systems (NIPS) 21, 689-696 
(2009). 

Causality with Feedback cycles 
• Hyttinen, A., Eberhardt, F., Hoyer, P.O., Learning Linear Cyclic Causal Models with Latent 

Variables. Journal of Machine Learning Research, 13(Nov):3387-3439, 2012. 
Causality with Latent Variables 
• Richardson, T. & Spirtes, P. Ancestral Graph Markov Models. The Annals of Statistics 30, 

962-1030 (2002). 
• Leray, P., Meganck, S., Maes, S. & Manderick, B. Causal graphical models with latent 

variables: Learning and inference. Innovations in Bayesian Networks 156, 219-249 
(2008). 



Conclusions 

• Causal Discovery is possible from observational data or by 
limited experiments 

• Beware of violations assumptions and equivalences 
• Causality provides a formal language for conceptualizing 

data analysis problems 
• Necessary to predict the effect of interventions 
• Deep connections to Feature Selection 
• Allows integrative analysis in novel ways 
• Advanced theory and algorithms exist for different sets of 

(less restrictive) assumptions 
• Way to go still, particularly in disseminating to non-experts 
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