Causal Discovery from Mass Cytometry Data

Presenters: Ioannis Tsamardinos and Sofia Triantafillou
Institute of Computer Science, Foundation for Research and Technology, Hellas Computer Science Department, University of Crete in collaboration with Computational Medicine Unit, Karolinska Institutet

The Measuring Technology

Mass Cytometry

-Single cells measurements
-Sample sizes in the millions, minimal cost
-Public data available
-Up to ~30 proteins measured at a time
-Applications

1. Cell counting
2. Cell sorting (gating)
3. Identifying signaling responses
4. Drug screening
5. De novo, personalized pathway / causal discovery (?)

Mass Cytometry

[Image by Bendall et al., Science 2011]

Cell Sorting (Gating)

- Immune system cells can be distinguished based on specific surface markers.
- Process resembles a decision tree

[Image by Bodenmiller et al., Nat. Biotech. 2012]

Identifying Signaling Responses

3. Cells are sorted by sub-population
4. Changes in protein abundance/phosphorylation in each subpopulation are quantified

- Immune responses are triggered by specific activators
- Signaling responses are sub-population specific.
- Mass cytometry for identifying signaling effects:

1. Functional proteins (non-surface) are also marked (e.g., pSTAT3 and pSTAT5)
2. Activators are applied to stimulate a response to disease

Difference in $\log 2$ mean intensity of the stimulated condition compared with the unstimulated control
[Image by Bendall et al., Science 2011]

Drug Screening

- Unwanted signaling responses should be suppressed for disease treatment
- Mass cytometry for drug screening

1. After stimulation, cells are treated with potential drugs (inhibitors)
2. Cells are sorted by sub-population
3. Dose-response curves are identified

- Per activator
- Per sub-population
- Per inhibitor
[Image by Bodenmiller et al., Nat. Biotech. 2012]

The Public Data

Bendall Data

Donor 1

Donor 2 Hematopoietic Continuum, Bendall et al., Science 332, 687 (2011)]

Bodenmiller Data: Time Course

[Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators, Bodenmiller et al., Nature Biotechnology 30, 9 (2012)]

Bodenmiller Data: 8 donors

[Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators, Bodenmiller et al., Nature Biotechnology 30, 9 (2012)]

Bodenmiller Data: Inhibitors

[Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators, Bodenmiller et al., Nature Biotechnology 30, 9 (2012)]

Data summary

	Bodenmiller data			Bendall data
	Inhibitor data	8donor data	Time course data	
Activators				
Time				
Donors				
Inhibitors				
Subpopulations				
Proteins				
		Collection All 1 tim All All Sub All 10+14 m	datasets with : ivators oint (30^{\prime}) nor ibitors pulations kers measured	

Data Summary

Causal Discovery in Mass Cytometry

Image courtesy of Dr. Brad Marsh

A typical day in the cell

- Feedback loops
- Latent variables
- Non-linear relations
- Unfaithfulness

A Basic Approach

Local Causal Discovery

Assumptions:

1. Causal Markov Condition
2. Reichenbach's Common Cause Principle
3. No feedback cycles

Nothing causes X

Issue \#1: Signaling is Sub-Population Specific

- Gate data
- Data were gated by the initial researchers in Cytobank.org
- Analyze sub-populations independently
- Gated sub-populations differ between Bodenmiller and Bendall
- cd4+, cd8+, nk sub-populations in common.

Bodenmiller		Bendall		
cd14+hladr-, cd14+hladrhigh cd14+hladrmid cd14+surf-cd14-hladr-cd14-hladrhigh cd14-hladrmid	cd14-surf- cd4+ cd8+ dendritic igm+ igm- nk	Pre-B II Mature CD38lo B Pre-BI Mature CD38mid B Immature B Plasma cell nk Myelocyte	Mature CD4+ T Naive CD4+ \mathbf{T} CMP Naive CD8+ ${ }^{\text {T }}$ Mature CD8+ ${ }^{\text {T }}$ CD11b- Monocyte CD11bmid Monocyte CD11bhi Monocyte	MPP HSC Megakaryocyte Erythroblast Platelet MEP Plasmacytoid DC GMP

Issue \#2:Dormant Relations

- Relations may appear only during signaling
- Pool together unstimulated and stimulated data
- Different parts of the pathway maybe activated by different activators
- Analyze data from different activators independently

Issue \#3:
 Testing Independence

- Check (in)dependencies:

1. $\operatorname{Dep}(X, Y \mid Z)$
2. $\operatorname{Ind}(X, Y \mid Z)$

- Choosing a test of conditional independence
- One binary, two continuous variables
- Relations typically non-linear
- Options:

1. Discretization BUT: does not preserve conditional independencies
2. Rejected but promising candidates:
3. Maximal Information Coefficients (Reshef et al., Science 334, 2011)
4. Kernel-based Conditional Independence test (Zhang et al., UAI 2011)
5. Fisher z-test of independence + logistic regression

Issue \#4

Make Reliable Predictions

- Check ALL (in)dependencies:

1. $\operatorname{Dep}(S, P 1)$
2. $\operatorname{Dep}(S, P 2)$

3. $\operatorname{Dep}(P 1, P 2)$
4. $\quad \operatorname{Ind}(S, P 2 \mid P 1)$
5. $\operatorname{Dep}(S, P 1 \mid P 2)$
6. $\operatorname{Dep}(P 1, P 2 \mid S)$

- Two thresholds, $a=0.05$ for dependence, $b=0.15$ for independence

Issue \#5:

Identify "Outlier" Experiments

- Inhibitor data for "zero" dosage and 8 donor data should represent the same joint distribution
- Do they?

Issue \#5:
 Identify "Outlier" Experiments

- Inhibitor data for "zero" dosage and 8 donor data should represent the same joint distribution
- Do they?

- Given a pair of plates:
- For each activator, rank correlations (of markers), compute spearman correlation of ranking
- Distance = 1-min correlation over activators

Pipeline for making causal predictions

Causal Postulates

288 predictions in 14 sub-populations

- A list of predicted causal pairs, each "tagged" for a specific population and activator, ranked according to a score quantifying the frequency of appearance.

Internal Validation

- 42% of the predicted triplets are also reported
- Despite strict thresholds and multiple testing
- Theory+algorithms: [Tillman et. al. 2008, Triantafillou et. al 2010, Tsamardinos et. al 2012]

Validation on Bendall Data

Bendall Data

- Run FCl with $a=0.05$
- Bootstrap for robustness
- Report
- Conflicting structures: Structures where $P_{2} \rightarrow P_{1}$
- Confirming Structures: Structures where $P_{1} \rightarrow P_{2}$

Measurements in Bendall data are taken 15 minutes after activation

Validation on Bendall Data

Results

- Hundreds of predictions to-be-tested; Experiments under way!
- Internal validation using non-trivial inferences
- Promising validation on another collection of dataset (Bendall)
- Evidence of batch effects and/or biological reasons of variability
- Method based on the most basic causal discovery assumptions

A Not So Basic Approach

Co-analyzing data sets from different experimental conditions with overlapping variable sets

- Different experimental conditions
- Different variable sets

- Data can not be pulled together because they come from different distributions
- Principles of causality links them to the underlying causal graph

p1	p2	\ldots	p30

p29 p30
p40

Co-analyzing data sets from different experimental conditions with overlapping variable sets

Identify a single causal graph that simultaneously fits all data

What type of causal graph?

- Semi-Markov causal models.
- $X \rightarrow Y: X$ causes Y directly in the context of observed variables.
- $X \leftrightarrow Y: X$ and Y share a latent common cause.
- Under faithfulness, m-separation entails all and only conditional independencies that stem from Causal Markov Condition.
- No learning algorithm.

Manipulations in SMCMs

- Values of B are set solely by the manipulation procedure
- Graph surgery: Remove all edges into the manipulated node.

Graph (SMCM) S

Reverse Engineering

Independencies as constraints

- Suppose you don't know anything about the structure S of the three variables.
- You find out that in $S^{B}: \operatorname{Ind}(A, C \mid \varnothing)$
- In path terms: \# path in S^{B} that is m-connecting A and C given \varnothing
- In SAT terms:

$$
\begin{gathered}
\neg \operatorname{edge}(A, C) \wedge \\
{[\neg \operatorname{edge}(A, B) \vee \operatorname{arrow}(A, B) \vee \operatorname{edge}(B, C) \vee \operatorname{arrow}(C, B)]}
\end{gathered}
$$

A-C does not exist AND
(A-B does not exist OR
$A-B$ is into B OR
B-C does not exist OR
$B-C$ is into $B)$

Statistical errors

- Constraints correspond to *

1. Dependencies $\operatorname{Dep}(A, B \mid \boldsymbol{Z})_{D_{i}}$
2. Independencies $\operatorname{Ind}(C, D \mid W)_{D_{i}}$

- e.g., $\operatorname{Ind}(A, B \mid \emptyset)_{D_{1}} \leftrightarrow \neg \operatorname{edge}(A, C) \wedge[\neg e d g e(A, B) \vee \operatorname{arrow}(A, B) \vee \operatorname{edge}(B, C) \vee \operatorname{arrow}(C, B)]$
- Compare a dependence to an independence
- How?
- Low p-value suggests dependence
- High p-value suggests independence (in the respective data set)

Comparing p-values

- $H_{0}: p \sim \operatorname{Beta}(1,1)$
- $H_{1}: p \sim \operatorname{Beta}(\xi, 1), \xi \in(0,1)$
- $f\left(p \mid \pi_{0}, \xi\right)=\pi_{0}+\left(1-\pi_{0}\right) \xi p^{\xi-1}, \pi_{0}$: The proportion of p -values coming from H_{0}
- If you know $\widehat{\pi_{0}}, \hat{\xi}$ you can find the MAP ratio
- $E_{0}(p)=\frac{P\left(H_{0} \mid p\right) P\left(H_{0}\right)}{P\left(H_{1} \mid p\right) P\left(H_{1}\right)}=\frac{\widehat{\pi_{0}}}{\left(1-\widehat{\pi_{0}}\right) \hat{\xi} p^{(1-\widehat{\xi})}}, \mathrm{E}_{1}=1 / \mathrm{E}_{0}$
- If $E(p)>E(p)^{-1}$, independence is more likely
- Sort p-values by max $\left(\mathrm{E}_{0}, \mathrm{E}_{1}\right)$
- Use (Storey and Tibshirani, 2003) to identify $\widehat{\pi_{o}}$
- Minimize negative log likelihood of $f\left(p \mid \widehat{\pi_{0}}, \xi\right)=\widehat{\pi_{0}}+\left(1-\widehat{\pi_{0}}\right) \xi p^{\xi-1}$ to identify $\hat{\xi}$.
- Rank constraints according to MAP ratio and satisfy them if possible in the given order.

"COmbINE" Algorithm

Data sets D_{i} measuring overlapping variables under different experimental conditions

COmbINE
Algorithm that transforms
independence constrains to SAT instance

Summary of semi Markov Causal models that best fits all data sets simultaneously

Similar Algorithms

- SBCSD: [Hyttinen et al., UAI, 2013]
- Inherently less compact representation of path constraints.
- Does not handle conflicts; non applicable to real data.
- In addition, it admits cycles.
- Scales up to 14 variables
- Lininf [Hyttinen et al., UAI 2012, JMLR 2012]
- Linear relations only.
- Scales up poorly (6 variables in total with overlapping variables, 10 without).
- In addition, it admits cycles.

	COmbINE	SBCSD
ASIA	7.1768 ± 5.2424	51.6617 ± 27.5997
CAR	3.6994 ± 2.2489	211.5117 ± 78.2334

Execution Time in Seconds

Performance on Simulated Data

Application on Mass Cytometry data

Data set	Source	$\mathbf{L}_{\mathbf{i}}$	$\mathbf{I}_{\mathbf{i}}$	Donor
$\mathbf{D}_{\mathbf{1}}$	Bodenmiller et al. (2012)	pMAPK	pAkt	1
$\mathbf{D}_{\mathbf{2}}$	Bodenmiller et al. (2012)	pMAPK	pBtk	1
$\mathbf{D}_{\mathbf{3}}$	Bodenmiller et al. (2012)	pMAPK	pErk	1
$\mathbf{D}_{\mathbf{4}}$	Bendall et al. (2011)	pAkt, pLat, pStat1	pErk	2
$\mathbf{D}_{\mathbf{5}}$	Bendall et al. (2011)	pAkt, pLat, pStat1	pErk	3

Summary and Conclusions

- Mass Cytometry data a good domain for causal discovery
- Hundreds of robust causal postulates
- Approach:
- Conservative: local discovery, performing all tests, independent analysis of populations
- Opportunistic: using 2 thresholds for (in)dependency
- New algorithm that can handle
- different experimental conditions
- overlapping variable subsets
- deal with statistical errors
- Numerous directions open for future work on this collection of data - Experiments under way!

Acknowledgements and Credit

Associate Prof Lab Head

Sofia Triantafillou
Ph.D. Candidate

Vincenzo Lagani
Research Fellow

Jesper Tegnér
Prof
Unit Head

Angelika Schmidt Post-Doc

David Gomez-Cabrero, Project Leader

Funded by: STATegra EU project (stategra.eu)

