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The Measuring 
Technology 
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Mass Cytometry 
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Single cells measurements 

Sample sizes in the millions, minimal cost 

Public data available 

Up to ~30 proteins measured at a time 

Applications 
1. Cell counting 

2. Cell sorting (gating) 

3. Identifying signaling responses 

4. Drug screening 

5. De novo, personalized pathway / causal 
discovery (?) 

  



Mass Cytometry 
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[Image by Bendall et al., Science 2011] 



Cell Sorting (Gating) 

• Immune system cells can be 

distinguished based on specific 

surface markers. 

 

• Process resembles a decision tree 
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[Image by Bodenmiller et al., Nat. Biotech. 2012] 



Identifying Signaling Responses 

• Immune responses are triggered by specific 

activators  

• Signaling responses are sub-population specific. 

• Mass cytometry for identifying signaling effects: 

1. Functional proteins (non-surface) are also marked 

(e.g., pSTAT3 and pSTAT5) 

2. Activators are applied to stimulate a response to 

disease 

3. Cells are sorted by sub-population 

4. Changes in protein abundance/phosphorylation in 

each subpopulation are quantified 
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Columns correspond to 
Different subpopulations 

Difference in log2 mean intensity of 
the stimulated condition compared 
with the unstimulated control 

[Image by Bendall et al., Science 2011] 



Drug Screening 

• Unwanted signaling responses should 
be suppressed for disease treatment 

• Mass cytometry for drug screening 

1. After stimulation, cells are treated with 
potential drugs (inhibitors) 

2. Cells are sorted by sub-population 

3. Dose-response curves are identified 

◦ Per activator 

◦ Per sub-population 

◦ Per inhibitor 
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[Image by Bodenmiller et al., Nat. Biotech. 2012] 



The Public Data 
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Bendall Data 
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13 surface    18 functional variables   

several 
subpopulations 

Donor 1 

13 surface    18 functional variables   

several 
subpopulations 

Donor 2 

[Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human 
Hematopoietic Continuum, Bendall et al., Science 332, 687 (2011)] 

no 
activator 



no 
activator 

 
 Bodenmiller Data: Time Course 
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10 surface 14 functional variables 

0 min 
1 min 

  5 min 

15 min 
30 min 

60 min 

120 min 

240 min 

11 activators 

Each well produces a data set. 

10 surface    14 functional variables   

several 
subpopulations 

 [Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule 
regulators, Bodenmiller et al., Nature Biotechnology 30, 9 (2012) ] 

A plate with 96 wells 



no 
activator 

Bodenmiller Data: 8 donors 
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8 donors 

11 activators 

A plate with 96 wells 

Each well produces a data set. 

10 surface    14 functional variables   

several 
subpopulations 

 [Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule 
regulators, Bodenmiller et al., Nature Biotechnology 30, 9 (2012) ] 



 
Bodenmiller Data: Inhibitors 
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Inhibitor 
(drug) in 7 
dosages 

11 activators 

27 inhibitors 

10 surface    14 functional variables   

several 
subpopulations 

 

 [Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule 
regulators, Bodenmiller et al., Nature Biotechnology 30, 9 (2012) ] 



Bodenmiller data Bendall data 

Inhibitor data 8donor data Time course data 

Activators 

Time 

Donors 

Inhibitors 

Subpopulations 

Proteins 

 
 
 
 

Collection of datasets with : 
All activators 

1 time point (30’) 
1 donor 

All Inhibitors 
All Subpopulations 

All 10+14 markers measured 

Data summary 
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Data Summary 
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 BTK  ERK  HLADR  IgM  NFkB  P38  PLCg2 

 

S6  SHP2  SLP76  STAT3  STAT5  ZAP70  Creb   CrkL  CXCR4 

 

H3   IkB a  Ki67 

 
MAPK
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BCR 

GCSF 
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 Flt3L 

 IL3 

GMCSF 
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SCF 

TNFα 
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IFN-g 

IL-2 
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Causal Discovery in Mass 
Cytometry 

• Feedback loops 
• Latent variables 
• Non-linear relations 
• Unfaithfulness 

 

A typical day in the cell 

Image courtesy of Dr. Brad Marsh 



A Basic Approach 
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Local Causal Discovery 
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Nothing causes X 

X Y Z 

Use stimulus as 
instrumental binary 

variable 

X Y Z 

X Y Z 

X Y Z 

X Y Z 

X Y Z 

X Y Z 

X Y Z 

X Y Z 

X Y Z 

𝐼𝑛𝑑(𝑋, 𝑍|𝑌) 

Assumptions: 
1. Causal Markov Condition 
2. Reichenbach’s Common Cause 

Principle 
3. No feedback cycles 



Issue #1:  
Signaling is Sub-Population Specific 

• Gate data 
◦ Data were gated by the initial researchers in Cytobank.org 

• Analyze sub-populations independently 

• Gated sub-populations differ between Bodenmiller and Bendall 
◦ cd4+, cd8+, nk  sub-populations in common. 
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Bodenmiller  Bendall 

cd14+hladr-, 

cd14+hladrhigh 

cd14+hladrmid 

cd14+surf- 

cd14-hladr- 

cd14-hladrhigh 

cd14-hladrmid 

cd14-surf- 

cd4+ 

cd8+ 

dendritic 

igm+ 

igm- 

nk 

 

Pre-B II 

Mature CD38lo B 

Pre-B I 

Mature CD38mid B 

Immature B 

Plasma cell 

nk 

Myelocyte 

 

 

Mature CD4+ T 

Naive CD4+ T 

CMP 

Naive CD8+ T 

Mature CD8+ T 

CD11b- Monocyte 

CD11bmid Monocyte 

CD11bhi Monocyte 

 

 

MPP 

HSC 

 Megakaryocyte 

 Erythroblast 

 Platelet 

MEP 

Plasmacytoid DC 

GMP 



Issue #2:Dormant Relations 

• Relations may appear only during signaling 
◦ Pool together unstimulated and stimulated data 

 

• Different parts of the pathway maybe activated by different activators 
◦ Analyze data from different activators independently 
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Issue #3:  
Testing Independence 
• Check (in)dependencies: 

1. 𝐷𝑒𝑝(𝑋, 𝑌|𝒁) 

2. 𝐼𝑛𝑑 𝑋, 𝑌 𝒁  

 

• Choosing a test of conditional independence 
◦ One binary, two continuous variables 

◦ Relations typically non-linear 

◦ Options: 
1. Discretization  BUT: does not preserve conditional independencies 

2. Rejected but promising candidates:   

1. Maximal Information Coefficients (Reshef et al., Science 334, 2011) 

2. Kernel-based Conditional Independence test (Zhang et al., UAI 2011) 

3. Fisher z-test of independence + logistic regression 
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S P1 P2 



Issue #4 
Make Reliable Predictions 

• Check  ALL (in)dependencies: 
1. 𝐷𝑒𝑝(𝑆, 𝑃1) 

2. 𝐷𝑒𝑝(𝑆, 𝑃2) 

3. 𝐷𝑒𝑝(𝑃1, 𝑃2) 

4. 𝐼𝑛𝑑(𝑆, 𝑃2|𝑃1)  

5. 𝐷𝑒𝑝 𝑆, 𝑃1 𝑃2  

6. 𝐷𝑒𝑝 𝑃1, 𝑃2 𝑆  

• Two thresholds,  𝑎 =0.05  for dependence, 𝑏 =0.15 for independence 
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S P1 P2 

p-value 

dep
end
ent 

𝑎 

independent 

𝑏 0 1 



 
Issue #5:  
Identify “Outlier” Experiments 
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Inhibitor 
(drug) in 7 
dosages 

27 inhibitors 

11 stimuli 

• Inhibitor data for “zero” dosage and 8 donor data should represent 
the same joint distribution 

• Do they? 



Distance 

Issue #5:  
Identify “Outlier” Experiments 

• Inhibitor data for “zero” dosage and 8 donor data should represent 
the same joint distribution 

• Do they? 
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• Given a pair of plates: 
• For each activator, rank correlations (of markers), compute spearman correlation of ranking 
• Distance = 1-min correlation over activators 
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Time Course Data 

First activation of 
𝑃2 occurs before first 

activation of 𝑃1 

Inhibitor Data 

For every inhibitor 

𝐷𝑖 = dataset with zero 
inhibitor dosage and activator 
i + dataset with zero inhibitor 

dosage and no activator  

𝑇𝑟𝑖𝑝𝑙𝑒𝑡 𝑆𝑖 , 𝑃1, 𝑃2 

𝑂𝑆𝑖→𝑃1→𝑃2
+ + 

𝑃1 is activated 

All necessary 
dependencies 

and 
independencies 

hold 

No 

No 

Yes 

Yes 

𝑆𝑐𝑜𝑟𝑒𝑆𝑖→𝑃1→𝑃2
=

𝑂𝑆𝑖→𝑃1→𝑃2
  

𝑇𝑃1

 

𝑂𝑆𝑖→𝑃1→𝑃2
= 0, 𝑇𝑃1

= 0 

Yes 
𝑆𝑆𝑖→𝑃1→𝑃2

= 0 

Return PREDICTIONS 
ranked by 

𝑆𝑐𝑜𝑟𝑒𝑆𝑖→𝑃1→𝑃2
 

Pipeline for making 
causal  predictions 

𝑇𝑃1
+ + 

Yes 

Yes 
No 



Causal Postulates 

•  A list of predicted causal pairs, each “tagged” for a specific population  and activator,  
ranked according to a score quantifying the frequency of appearance. 
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0.5482 
 PVO4 pPlcg2 pSTAT3 0.875 

0.5512 
 PVO4 pPlcg2 pZap70 0.8125 

0.7152 
 PVO4 pSlp76 pSHP2 0.8125 

0.6708 
 PVO4 pSHP2 pSTAT3 0.7857 

0.8526 
 PVO4 pPlcg2 pP38 0.75     

0.6166 
 PVO4 pPlcg2 pZap70 0.75     

0.5688 
 PVO4 pSlp76 pZap70 0.75     

0.4557 
 PVO4 pSTAT3 pBtk 0.7059 

0.5688 
 PVO4 pSHP2 pZap70 0.7143 

cd14-hladr- 

cd14-hladrmid 

cd14-hladrmid 

dendritic 

cd14+hladr- 

cd14-hladr- 

cd14-hladr- 

cd14-hladrmid 

cd14-hladr- 
0.4557 
 BCR pS6 pErk 0.7037 igm- 

288 predictions in  
14 sub-populations 



Internal Validation 
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Activator Protein1 Protein2 

Activator Protein3 Protein2 

• 42% of the predicted triplets are also reported 
• Despite strict thresholds and multiple testing 

 
• Theory+algorithms: [Tillman et. al. 2008, Triantafillou et. al 2010, Tsamardinos et. al 2012] 

Check whether predicted 
triplet has also been reported 

Activator Protein1 Protein3 

Activator Protein3 Protein1 

OR 

Protein2 

Protein2 



Validation  on Bendall Data 

0.2411 

PMA ERK STAT3 

CD8+  

0.4444 

0.5185 
0.3114 

PMA P38 STAT3 

0.2459 

IFNa BTK SHP2 0.4231 

0.1802 

IFNa STAT5 ZAP70 0.5185 

PMA ERK STAT3 

NK 

0.5185 

0.4444 PMA S6 NFKb 

PMA S6 STAT3 0.4815 

PMA ERK ZAP70 0.4074 

0.3341 

0.2502 

0.5396 

0.2236 

• Run FCI with 𝑎 = 0.05 
• Bootstrap for robustness 
• Report 

• Conflicting structures: Structures 
where 𝑃2 → 𝑃1 

• Confirming Structures: Structures 
where 𝑃1 → 𝑃2 

Bendall Data 

PMA S6 STAT3 0.4074 

LPS SHP2 ZAP70 0.4444 

CD4+  0.1476 

0.4352 

! 
Measurements in Bendall data are 
taken 15 minutes after activation 
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Validation on Bendall Data 
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0.2411 

PMA ERK STAT3 

CD8+  

0.4444 

0.5185 
0.3114 

PMA P38 STAT3 

0.2459 

IFNa BTK SHP2 0.4231 

0.1802 

IFNa STAT5 ZAP70 0.5185 

PMA S6 STAT3 0.4074 

LPS SHP2 ZAP70 0.4444 

PMA ERK STAT3 

NK 

0.5185 

0.4444 PMA S6 NFKb 

PMA S6 STAT3 0.4815 

PMA ERK ZAP70 0.4074 

CD4+  

0.010 0.350 
0.3341 

0.1843 

0.130 0.360 0.2498 
0.2502 

0.5396 

0.2236 

0.230 0.230 0.1891 

0.050 0.450 0.1758 

0.000 0.360 0.2936 

0.130 0.490 0.1561 

0.020 0.150 0.0793 

0.050 0.020 0.0628 

0.000 0.050 0.1113 

0.000 0.240 0.2221 

Conflicting Confirming Correlation 

0.1476 

0.4352 



Results 

• Hundreds of predictions to-be-tested; Experiments under 
way! 

• Internal validation using non-trivial inferences 

• Promising validation on another collection of dataset 
(Bendall) 

• Evidence of batch effects and/or biological reasons of 
variability 

• Method based on the most basic causal discovery 
assumptions 

29 



A Not So Basic 
Approach 
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Co-analyzing data sets from different experimental 
conditions with overlapping variable sets 
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Condition A Condition B 

Condition C Condition D 

• Different experimental conditions 
• Different variable sets 

• Data can not be pulled 
together because they 
come from different 
distributions 
 

• Principles of causality 
links them to the 
underlying causal graph 



Co-analyzing data sets from different experimental 
conditions with overlapping variable sets 
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Condition A Condition B 

Condition C Condition D 

Identify a single 
causal graph that 
simultaneously fits 
all data 



What type of causal graph? 
• Semi-Markov causal models. 

• 𝑋 → 𝑌: 𝑋 causes 𝑌 directly in the context of observed variables. 

• 𝑋 ↔ 𝑌: 𝑋 and 𝑌 share a latent common cause. 

• Under faithfulness, 𝑚-separation entails all and only conditional 
independencies that stem from Causal Markov Condition. 

• No learning algorithm. 
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A B D 

C 



Manipulations in SMCMs 
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A B D 

C 

Manipulated SMCM  𝑆𝐵 

• Values of 𝐵 are set solely by the 
manipulation procedure 
 

• Graph surgery: Remove all edges into 
the manipulated node. 

Graph (SMCM) 𝑆 



Reverse Engineering 
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A B D 

C 

E 

A B D 

C 

E 

A B D 

C 

E 

A B D 

C 

E 

𝐷𝑒𝑝 𝐴, 𝐷 ∅ D1
 

𝐷𝑒𝑝 𝐴, 𝐷 𝐵 𝐷1
 

𝐷𝑒𝑝 𝐴, 𝐷 𝐸 𝐷1
 

𝐼𝑛𝑑 𝐴, 𝐷 𝐵, 𝐸 D1
 

𝐷𝑒𝑝 𝐴, 𝐵 ∅ 𝐷1
 

… 
𝑆 

𝑆, 𝐶 is latent 

𝑆, 𝐸 is latent 

𝑆𝐶 ,  𝐸 is latent 

𝐷𝑒𝑝 𝐴, 𝐷 ∅ D2
 

𝐷𝑒𝑝 𝐴, 𝐷 𝐵 𝐷2
 

𝐷𝑒𝑝 𝐴, 𝐷 𝐸 𝐷2
 

𝐷𝑒𝑝 𝐴, 𝐷 𝐶 𝐷2
 

𝐷𝑒𝑝 𝐴, 𝐷 𝐵, 𝐶 𝐷2 
… 

𝐼𝑛𝑑 𝐴, 𝐷 ∅ 𝐷3
 

𝐷𝑒𝑝 𝐴, 𝐵 ∅ 𝐷3
 

𝐷𝑒𝑝 𝐴, 𝐵 𝐶 𝐷3
 

𝐷𝑒𝑝 𝐴, 𝐵 𝐷 𝐷3
 

𝐷𝑒𝑝 𝐴, 𝐷 𝐶𝑑 𝐷 𝐷3
 

𝐼𝑛𝑑 𝐵, 𝐶 ∅ 𝐷3
 

… 
Unknown True SMCM 𝑆 Observed (in) dependencies 

𝑆 under manipulation 
and marginalization 



Independencies as constraints 
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A 

B 

C 

• Suppose you don’t know anything about the 
structure 𝑆  of the three variables.  
 

• You find out that in 𝑆𝐵 : 𝐼𝑛𝑑 𝐴, 𝐶 ∅  
 

• In path terms: ∄  path in 𝑆𝐵 that is m-connecting 
𝐴 and 𝐶 given ∅  
 

• In SAT terms: 
 

 

A-C does not exist 

(A-B does not exist 

OR 
A-B is into B 

B-C does not exist 
OR 

OR 

 B-C is into B) 

¬𝑒𝑑𝑔𝑒 𝐴, 𝐶 ∧ 
[¬𝑒𝑑𝑔𝑒 𝐴, 𝐵 ∨ 𝑎𝑟𝑟𝑜𝑤 𝐴, 𝐵  ∨ 𝑒𝑑𝑔𝑒 𝐵, C ∨ 𝑎𝑟𝑟𝑜𝑤(𝐶, 𝐵)] 

 

AND  



Statistical errors 
• Constraints correspond to * 

1. Dependencies 𝐷𝑒𝑝 𝐴, 𝐵 𝒁 𝐷𝑖
 

2. Independencies 𝐼𝑛𝑑 𝐶, 𝐷 𝑾 𝐷𝑖 

 

◦ e.g., 𝐼𝑛𝑑 𝐴, 𝐵 ∅ 𝐷1 ↔ ¬𝑒𝑑𝑔𝑒 𝐴, 𝐶 ∧ [¬𝑒𝑑𝑔𝑒 𝐴, 𝐵 ∨ 𝑎𝑟𝑟𝑜𝑤 𝐴, 𝐵  ∨ 𝑒𝑑𝑔𝑒 𝐵, C ∨ 𝑎𝑟𝑟𝑜𝑤(𝐶, 𝐵)] 

• Compare a dependence to an independence  
◦ How? 

◦ Low p-value suggests dependence 

◦ High p-value suggests independence 

 (in the respective data set) 
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What happens 
with statistical 

errors? 

Conflicts make SAT 
instance 

unsatisfiable! 

Sort constraints! 

*well, not really 



Comparing p-values 
• 𝐻0: 𝑝~𝐵𝑒𝑡𝑎 1,1    

• 𝐻1: 𝑝~𝐵𝑒𝑡𝑎 𝜉, 1 , 𝜉 ∈ (0, 1) 

•  𝑓 𝑝 𝜋𝑜 , 𝜉 = 𝜋0 + 1 − 𝜋0 𝜉𝑝𝜉−1 ,  𝜋0: The proportion of p-values coming from 𝐻0 

•  If you know  𝜋0 , 𝜉  you can find the MAP ratio 

• 𝐸0 𝑝 =  
𝑃(𝐻0|𝑝)𝑃(𝐻0)

𝑃(𝐻1|𝑝)𝑃(𝐻1)
=

𝜋0 

1−𝜋0 𝜉 𝑝(1−𝜉 )
, E1 = 1/E0  

 

◦ If 𝐸 𝑝 > 𝐸 𝑝 −1, independence is more likely  
 than dependence 

• Sort p-values by max(E0, E1) 

• Use (Storey and Tibshirani, 2003) to identify 𝜋𝑜  

• Minimize negative log likelihood of 
 𝑓 𝑝 𝜋0 , 𝜉 = 𝜋0 + 1 − 𝜋0 𝜉𝑝𝜉−1  to identify 𝜉  . 

• Rank constraints according to MAP ratio and satisfy them if  
possible in the given order. 
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“COmbINE” Algorithm 
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Data sets 𝐷𝑖 measuring 
overlapping variables 

under different 
experimental conditions 

COmbINE 
Algorithm that transforms 

independence constrains to SAT 
instance 

Summary of semi Markov Causal 
models that best fits all data sets 

simultaneously 

Eric Ellis 



Similar Algorithms 
• SBCSD: [Hyttinen et al., UAI, 2013] 

◦ Inherently less compact representation of path constraints. 

◦ Does not handle conflicts; non applicable to real data. 

◦ In addition, it admits cycles. 

◦ Scales up to 14 variables 

• Lininf  [Hyttinen et al., UAI 2012, JMLR 2012] 

◦ Linear relations only. 

◦ Scales up poorly (6 variables in total with overlapping variables, 10 
without). 

◦ In addition, it admits cycles. 
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Execution Time in Seconds 



Performance on Simulated Data 
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Application on Mass Cytometry data 
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cd4+ T-cells cd8+ T-cells 

Response to PMA 



Summary and Conclusions 
• Mass Cytometry data a good domain for causal discovery 

• Hundreds of robust causal postulates 

• Approach: 
◦ Conservative: local discovery, performing all tests, independent analysis of 

populations 
◦ Opportunistic: using 2 thresholds for (in)dependency 

 

• New algorithm that can handle  
◦ different experimental conditions  
◦ overlapping variable subsets  
◦ deal with statistical errors 

 

• Numerous directions open for future work on this collection of data 
◦ Experiments under way! 
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