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Post-analysis
INnferpretation ana
visudlizations




Why interpreting a predictive model

o Understanding how the model operates contributes to a better
understanding of the problem (knowledge discovery):

o What can the effect of each predictor be ¢ Is it always the same¢ Or
does it changes depending on the values of the other predictors?

o How can | explain why a specific sample is assigned to a class and nof
to anothere

o Alternative approach: black-box
o Suitable is you are interested exclusively in predictive performances




Effect sizes In linear models

o Simple case: linear model
o P(Disease|predictors) = 0.21-1kzf1 — 0.78 - Myc + 0.45 - H3k4

o The fictional example depicts a linear model where the .
probability of disease is computed on the basis of the expression
of a group of genes

o If the expression data are all standardized, then the
coefficients of the model correspond to effect sizes

o Furthermore, the effect sizes are constant, i.e., they do not
change depending on the value of the other predictors



Effect sizes in linear models with
INtferactions

o Not so simple case: linear model with interaction
o P=021-1kzf1—0.78- Myc + 0.45 - H3k4 + 0.18 - Ikzf1 - Myc

o Adding an interaction ferm implies that the effect of
IKZF1 and Myc is not constant anymore

o IKZF1 and Myc now depends on each other value



|ICE plofts: visualizing effect sizes in
general models

o Individual Conditional Expectation
(ICE, Goldstein at al. 2015) plots
allow to visuadlize the effect of 1
predictors in any type of model:

o P(Disease|predictors) =
f(Myc,lkzf1, H3k4)

~__ 7

P(Disease)

o The solid line corresponds to the
average effect of Ikzf1 on the
probability of disease

o Confidence interval as shaded area o

0 Ikzf1 1



|ICE plofts: visualizing effect sizes in
general models

o Let us assume we have a
specific sample, S1, with 1
o lkzf1 = 0.38,
o Myc =0.26
o H3k4 = 0.56
o f(lkzf1, Myc, H3k4) = 0.7

o The sample would
correspond to the red
point in the graph

P(Disease)

0 Ikzf1 1



|ICE plofts: visualizing effect sizes in
general models

o We now change the value
of Ikzf1, leaving Myc and .
H3k4 unchanged:

o lkzf1 = 0.45,

O

O

o f(lkzf1, Myc, H3k4) = 0.6

o The new fictional sample
would correspond to the
second red point 0

P(Disease)

0 Ikzf1 1



|ICE plofts: visualizing effect sizes in

general models

o Changing the lkzflvalue
several fimes allow to plot
a curve representing lkzf1

effect on the probability of
disease for sample Sl

P(Disease)

I

Ikzf1 1




|ICE plofts: visualizing effect sizes in
general models

o Changing the lkzflvalue
several fimes allow to plot 1
a curve representing lkzf1
effect on the probabillity of
disease for sample S1

o Repeating the same
procedure for all other
samples produce a
distribution of effect-size
CuUrves 0

{

0 Ikzf1 1



|ICE plofts: visualizing effect sizes in
general models

o The final ICE plotis produced by: 1

o computing an average line out of
the sample-specific curves

o computing confidence intervals

~__ 7

P(Disease)

o These plots allow to deftect and
represent non-linear dependencies
between predictors and outcome

0

0 Ikzf1 1



Single prediction explanation

o Question: which predictor influenced the most the
prediction on a specific sample?

o Sample S1: <lkzf1, Myc, >=<0.83, 0.11, >

o Trivial answer for linear models: the predictor
corresponding to the largest monomial in absolute value

o P(Disease|predictors) = 0.21-0.83 —0.78-0.11 + =

lkzf1 has the highest
monomial

0.17 - 0.09 + = 0.22




Leave-One-Covariate-Out (LOCO)

o The LOCO methodology offers a possible solution for
non-linear models [Leil at al. 2018]

o Let us assume to have the following dataset,
augmented with the predictions (Y) from our model:

m laft | mye | b ¥

0.20 0.24 0.53 1 0.89
S2 0.69 0.91 0.78 0 0.23
S3 0.43 0.38 0.07 1 0.78



Leave-One-Covariate-Out (LOCO)

o lkzf1 can be set to zero (or other convenient default
value) and the predictions be re-evaluated

o In the example, only the prediction for sample S2
changes considerably

IS T T T I A

0.24 0.53 1 0.89 0.82
S2 0 0.91 0.78 0 0.23 0.65
S3 0 0.38 0.07 1 0.78 0.73



Leave-One-Covariate-Out (LOCO)

o We repeat by leaving out one covariate at the tfime

o Itis evident that the prediction for S1 is particularly
sensitive to a change of the Myc predictor, while the S2
prediction is influenced by lkzfl. The prediction for S3
seems quite stable

0.20 0.24 0.53 1 0.89 0.82 0.21 0.85
S2 0.69 0.91 0.78 0 0.23 0.65 0.25 0.22
S3 0.43 0.38 0.07 1 0.78 0.73 0.76 0.77




The old good way: residual inspection

o The difference between the actual and predicted
values Y —Y should always be assessed

o Linear models require normally R
distributed residuals o | o ',, PEIRE
oA Y vttt
LB PR '
o The presence of any outlier or -
suspicious trend should be
carefully checked P outier
Samples
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Al-assisted Auto-ML




ML c Al

o The terms Machine Learning (ML) and Artificial
Intelligence (Al) are progressively more often used as
synonym

o Alis actually a wider topic and includes different
technologies

o We are interested in Al technologies that can help the
data analyst in devising better ML analyses

o ldedadlly, we would like to have an Al system smart
enough to automatically solve ML tasks



Knowledge-based Artificial
Intelligence

o Knowledge-based Al attempts to represent human
knowledge in a structured way, namely Knowledge
Bases (KB)

o The information contained in a KB is used by inferential
engines for automatically inferring new facts.



What is iIn a Knowledge Base?
Ontologies and Rules

o KB are usually composed by ontologies and rules

o Ontologies represents entities
and their relationships

data_mining_task

> dataset

has_information

predictive_modeling

E.g., “predictive_modeling”
|s a “data_mining_task”

> generalization

has_information

pattern_discovery

»  task description

has_representation

clustering

o Several formal languages exist g
for ontologies, e.g., the Web P outor

Ontology Language

(OWL, ) Adapted from Panov et al., 2008


https://www.w3.org/OWL/

What is iIn a Knowledge Base?
Ontologies and Rules

o Rules can be added to a KB in order 1o increase the
deductive reasoning capabilities of the onftology

o “IF the data mining task is predictive modelling AND the
dataset is high dimensional, THEN use a linear SVM classifier”

o The Semantic Web Rule Language (SWRL) is one of the
languages used for encoding rules iNn KBS

different languages offer vcrymg degrees of expressiveness
and analyzability


https://www.w3.org/Submission/SWRL/

How to use a Knowledge Base®e
Populating and Querying

o Once entities are defined in a ontology, it is possible to
specify exact instances

o E.g., for the entity “dataset” and its attribute “sample_size”
and “feature_size"”, we may want to specify instances like
<myCyTOFDatq, 20000, 35> and <myNGSDatq, 120, 40000>

o Similarly, we may want to indicate the instances
<RandomfForest> and <SVM> for the enfity “classifier”



How 1O
Popula

use a Knowledge Base<¢

fing and Querying

o A popula
answering

o Example:

'ed KB can be analyzed by an inferential engine for
queries asked by the user

find all classifiers that are compatible with

MyCyTOFData dataset and that produce interpretable

models

o SPARQL (
MOost com

) is one of the
mon languages for encoding queries

o Queries are the most useful feature of KBs, allowing to infer

non-frivial

facts through deductive logic


https://www.w3.org/TR/rdf-sparql-query/

Existing ontologies for ML and data

mMiNin

9

o Several ontologies for ML have been proposed over the
years, no formal consensus has been reached yet

o KD Ontology [Z&kovd et al. 2010]
o KDDONTO Ontology [Diamantini et \
al. 2009]

o DMW
o DMO

- Ontology [Kiefz et al. 2009]
P Ontology [Hilario et al. 2009]

o Onto

DM [Panov et al. 2008]

Part of the OntoDM-core ontology



Beyond guerying: planning the whole
ML workflow

o Final goal of Al-assisted ML: idenftitying the complete set
of steps (a.k.a. workflow) needed for analyzing the data
at hand

o Specidl inferential engines are needed, able to take
INTO account precedence constraints

o e.g., data normalization should be performed before
classification



Example of workflow planning

o Left: a pipeline that pre-
processes data with rescaling,
Imputation, and features are

fast ICA before using a

decision tree for prediction.

o Middle: the data are
fransformed with PCA before
prediction with nested

e Siaon, If
o Right: no pre-processing, neural | e
networks Used for prediction | (aepwans
o Each set of arrows indicate (rescaling
points where alternative S
choices can take place G
( predictFromDT

-

( preprocess

i -
\classify

( [ciasszfy ] |

[ preprocessData ]

( [pmprocessData )
(preprocessData )
[prepmcessFeaturesJ

| (classz’fy

:classify ]
v

(PCA )

[cﬁasszfy WithND |

(PcA

(buildND

(trainND )

z predictFromND j

Y
(pPcA )
(configureNDSplit )
[ configure NDSplit ]

[ configure NDSplit ]
(trainND )
)

[predictﬂ"omND

Adapted from Mohr et al., 2018
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(trainNN

z predict From NN
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:addLayer
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Works on planning for auto-ML

o eProPlan: an ontology-based Al planner for ML
workflows, based on the DMWEF ontology [Kietz et al.
2010][Kietz et al. 2012]

o The forward chaining planning algorithm based on the
KD Ontology [Zdkovda et al 2011]

o Workflow optimization based on ontology and meta-
mining [Hilario et al. 2011]

o ML-Plan: a system using hierarchical task networks for
identifying the best ML workflow [Mohr et al., 2018]



ML to improve ML analyses

o Large data analysis centers or data analytics services
oerform thousands of ML tasks a day

o It makes sense to register as many information on each
task as possible, for example:

Info about dataset Info about the analysis Info about performances
--
processing | selection

12879 None 0.91 0.89
2 235 12000 Normalize Yes RF 0.87 0.67



ML to improve ML analyses

o Meta-learning or Meta-Level learning: applying ML for
predicting which method/protocol/workflow will likely
lead to the best model

Sample Size

>20000

é ML Engine Performance




Works on meta-level learning for auto-
ML

o Meta-learning for clustering algorithms [De Souto et al.
2008] [Ferrari et al. 2015]

o Meta-learning based on mining rules [Nascimento et al.
2009]

o Cloud-based meta-learning system for biomedical
data [Vukicevic et al. 2014]



Availabillity Al assisted ML tools

o No off-the-shelf tool offers KB- or planning-based solutions for
ML in a user-friendly way

o Exception: the IDA plugin for the RapidMiner platform (last
updated in 2012) [Kietz et al. 2012]

o Several ML ontologies are available, however their use require
significant experience

O
O

O


http://www.e-lico.eu/dmwf.html
http://www.e-lico.eu/DMOP.html
http://www.ontodm.com/doku.php?id=ontodm-core
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Putting all together




JAD DEMO In class




Tools for Auto-ML




Auto-ML fools landscape

Open source, academic software

B E = -
:E x;j\g\ ,?’i.g@ ﬂ;ﬁ@fy ag;«*? A u to
Wona
An Automated Data Mining Software Based on Weka e a rn

R e ® DataRobot H,0.

SIGOPT OptiML/ blg@ Commercial tools
e



AUTO-ML tools characterization

On-line service vs. Automation level User interface
stand-alone - Hyper-parameter optimization - GUI graphical user interface
- On line service: remote - Additional features: feature - Software library: needs
service accessible through construction, visualization programming skills

web-based interface
- Stand-alone: software /
libraries to use locally

\ ,

Academic vs. commerical Level of customization

- Academic: open-source, free-of- - Flexible: users can largely
charge for research customize the tool operation

- Commercial: requiring - Fixed: no customization options

subscriptions / payments




Academic auto-ML software

o AuUto-ML tools developed into the academia usually
share some common characteristics:

1. They are stand-alone, open source software libraries,
requiring advanced programming skills

2. They offer hyper-parameter tuning, but lack other
functionalifies (visualization, results explanation, efc.)

3. Their operation is largely customizable, provided that
the user has the necessary programming and
theoretical skills




Main academic auto-ML tools

o Python libraries: auto-sklearn, spearmint, Hyperopt, TPOT

o They implement Bayesian Optimization algorithms customized
for machine learning. TPOT is an exception, being based on
genetic algorithms.

>>> import autosklearn.classification
M M o >>> import sklearn.model selection
o R libraries: mIrMBO, mirHyperopt = fer: team e
>>> import sklearn.metrics
>>> X, y = sklearn.datasets.load_digits(return_X_y=True)

O SImI|CII'|y TO Thell’ PYThOﬂ >>> X_train, X_test, y_train, y_test = \
counterparts, these libraries e B i g w e L Mg R
implement Bayesian Optimization i i,
ClpprOCICheS SpeCidlized fOr >>> print("Accuracy score", sklearn.metrics.accuracy_score(y_test, y_hat))
machine learning applications

within the R Stafistical Software



AN academic auto-ML tool outlier:
AutoWeka

o Hyper-parameter tuning adds-on
for the Weka datamining

software e e J
l@ e =
o It offers an eosz,—’ro—use GUl (no - ']
programming skills required) -
mmmmm - }
o Poor level of customization; the e
user is left with only the choiceof = ...
how many time and . on e e e |
computafional resource to assign = (]

to the search



Academic auto-ml tools applicabllity
on high-dimensional, biological data

Cons
- - o focus on hyper-parameter
o Highly customizable opftimization: no support for
systems, can be adapfed data preparation or
fo the characteristic of visualization / interpretation of
different studies the results

([exception: autoweka) o Default parameters usually

not suitable for high
o Part of these tools support dimensional datasets or

parallel computation knowledge discovery (e.g..
lack of feature selection)
o Free, open source

o Need advanced coding skills



Commercial auto-ml software

o Common fraits of commercial auto-ml tools:

1. Optimized for tasks common in industry / retail sectors,
with million of samples and relatively few variables
(ranging from hundreds to a few thousands)

2. Easy-to-use user interfaces requiring No programming
skills

3. Offering several functionalities beyond hyper-

parameters tuning, such as feature construction, results
INnspection and visualization



On-line commercial auto-ML tools

o These services are based on a simple
schema:

o upload data (usually csv format) on
external servers

o Indicate preferences (e.q., variable 1o
predict)

B E )
o the service iterates over a number of
models searching for the best option

o A set of results is presented to the users



On-line commercial auto-ML systems

o Most relevant examples:
o DataRobot

o bigML

o |IBM Watson Predictive Analytics

o efc.
o Services largely differentiates on the basis of:
type and number of employed algorithms
level of customizability for the users
presentation of results

o O O O

pricing schema



Other commercial auto-ML systems

o Cloud AutoML from Google

o Similar fo other on-line systems, however to date it only
processes Natural Language Text and Images

o H20 Driveless Al
o Al add-on for the machine learning platform H20
o Can be installed on local premises
o Focus on:
o Automatic Feature Engineering
o Machine Learning Interpretability



Commercial auto-ml tools applicabillity
on high-dimensional, biological data

Cons
o Friendly user interface o Not sui’roble for small
o Addifional features samples size (< 500
. samples)
ranging from feature
constructions to model o Not customized for
inferpretation and biology: no interpretation
visualization of the results against
biological knowledge

o Pricing schema can be an
obstacle



Which AutoML Tools
are Correcte




Correctness

o What about correct, non-optimistic estimation of
performancee

o Which AutoML tools follow correct estimation protocolse
o Work under progress

o Our experience with Auto-Weka follows




Setfting up the comparison

o We contrasted AutoWeka and JAD Bio on @
chemosensitivity analysis

o Training data from the Cancer Cell Line Encyclopaedia
(CCLE)

o Test set from the The Genomics of Drug Sensitivity in
Cancer (GDSC)

o Both tools were used with default settings
o "Quick’ configuration for JAD Bio

o AUC was used as optimization metric for both analysis



The CCLE and GDSC studies

o CCLE [Barretina et al. 2012] | o GDSC [Garnett et al. 2012]
o 24 active compounds o 140 active compounds

o 1061 cell lines o 1097 cell lines

o 45000+ measurements across
o Transcriptomics

o Copy Number Variation
o Genomic information

We use the data as processed in a subsequent publication by Smirnov et al. 2016



Measuring drug activity

o IC50: drug concentration Activity area
needed to shrink the tumour
by half

Brmomer——
Amax

Relative growth
inhibition (%)
o
o))

f')q

Drug concentration

o The smaller the IC50, the faster
the action of the compound



Results on the GDSC test set

o JAD Bio results
o Estimate on the training set: 0.853 AUC with CI [0.77, 0.91]
o Estimate on the GDSC test set: 0.73 AUC

o AutoWeka results

o Estimate (using cross-validation) on the training set: 0.99 AUC
o Estimate on the GDSC test set: 0.64 AUC

Unacceptable, misleading estimation

Further testing required to evaluate the extent of this phenomenon
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