Cite as: Ioannis Tsamardinos, Vincenzo Lagani, Automated Machine Learning and Knowledge Discovery, ECCB 2018 Tutorial

Automated Machine Learning and Knowledge Discovery

PROFESSOR, CSD, UNIVERSITY OF CRETE
GNOSIS DATA ANALYSIS, CO-FOUNDER

VINCENZO LAGANI
ILIA STATE UNIVERSITY
GNOSIS DATA ANALYSIS, CO-FOUNDER

Outline

Part I (45')

- Introduction to the problem and the tutorial
- Estimation of performance (single configuration)

Part II (45')

- Estimation of performance (multiple configurations)
- Incorporating User Preferences

Part III (45')

- Feature Selection and Knowledge Discovery
- Hyper-parameter search strategies

Part IV (45')

- Post-analysis interpretation and visualizations
- Al-assisted Auto-ML (algorithm selection, pipeline synthesis, metalearning, feature learning)
- Putting all together The Just Add Data Bio platform
- Tools for Auto-ML

Outline

Part I (45')

- Introduction to the problem and the tutorial
- Estimation of performance (single configuration)

Part II (45')

- Estimation of performance (multiple configurations)
- Incorporating User Preferences

Part III (45')

- Feature Selection and Knowledge Discovery
- Hyper-parameter search strategies
- Part IV (45')
 - Post-analysis interpretation and visualizations
 - Al-assisted Auto-ML (algorithm selection, pipeline synthesis, metalearning, feature learning)
 - Putting all together The Just Add Data Bio platform
 - Tools for Auto-ML

Feature Selection and Knowledge Discovery

Messages

- o Feature Selection is **arguably the main tool** for knowledge discovery
- o Causal models help <u>understand the feature selection problem</u>, in a non-parametric way
- o Causally-inspired algorithms:
 - Provide theoretical <u>guarantees</u>
 - o Applicable to any type of data for which a conditional independence test is available
 - Scale up to tens of millions of features and tens of millions of rows (Big Volume Data)
 - Competitive predictive performance against alternatives (e.g., Lasso)
 - o Can find multiple, statistically-equivalent solutions
 - Solution(s) has <u>intuitive</u> causal interpretation
 - o Robust, efficient implementations available

Why Feature Selection

Training data

Training data

Feature selection

Model

ID	X ₃	X_4	\mathbf{x}_m	target
1	0.3	0.06	2	yes
2	2.3	0.1	2	no
n	5.8	0.04	3	no

Learning Method

Model

Why Feature Selection?

- Feature selection is the **main tool for knowledge discovery** with data analysis
 - Often it the primary goal of the analysis; the <u>predictive model is only a side-</u> product
 - Provides intuition to "what matters" for prediction
 - Connected to the <u>causal</u> mechanisms generating the data (Tsamardinos, Aliferis, Al&STATs 2003)
 - <u>Dimensionality Reduction</u>, e.g., PCA, is harder to interpret
- Feature Selection = Knowledge Discovery
- Also, may actually improve predictive performance

 By removing irrelevant or redundant features, learning algorithms are fácilitated
- Reduces the cost of storing, computing, measuring, processing the

Defining Feature Selection (Oracle)

- o $\operatorname{Ind}(T; X \mid \mathbf{Z})$: X independent of T conditioned on (given) \mathbf{Z}
- o Single Solution: Find a minimal-size feature subset $S \subseteq F$, s.t. $Ind(T; \mathbf{F} \setminus \{S\} \mid S)$
 - Equivalently: P(T | S) = P(T | F)
 - Selected features S do not change the conditional probability of T
 - Selected features S carry all information to predict/diagnose T
 - There is no subset $S' \subseteq S$ s.t. P(T | S') = P(T | S)
- \circ Definition requires knowledge of P(T/F)
- \circ S: a minimal-size set that renders all other features conditionally independent of T
 - S is called a Markov Blanket of T [Markov Boundary in Pearl, Comput. Intel, 1988]
- NP-complete problem even for linear regression [Welch, Biometrika, 69(2),1982]

Defining Feature Selection (no Oracle)

- Single Solution:
 - Maximize performance of model built
 with features S using learner f, s.t. |S/ is minimal

 No knowledge of conditional distribution of T, need to estimate from finite sample

Defining Feature Selection: Subtleties

- o "Maximizing performance": solution depends on performance metric
 - Example, P(T+ | X+) = 0.6, P(T+ | X-) = 0.7. and metric is accuracy: **accuracy is maximized without X!**
- o "using learner f": solution depends on learner
 - Example by [Kohavi & John, 1997]
 - o $T = X + constant + \varepsilon$, ε ~N(0,1), Y = I always, and learner f is a linear classifier without a constant term
 - o Optimal model fit with f as $T = X + constant \times Y$, Y participates in the solution!
- Sufficient conditions for finite-sample solution to converge to the asymptotic one
 - \circ Learner should converge to (learn) P(T/S) for a solution S
 - o Performance metric (loss) is **optimized** asymptotically **only** when $Ind(T; \mathbf{F} \setminus \{S\} \mid S)$

Multiple Feature Selection (I)

- o Important problem!
 - Knowledge discovery: Misleading to inform a biologist that only genes in S are "important" when other genes S'could replace them!
 - Cost-aware feature selection: when features have measurement cost, give options what to measure
- \circ Multiple Solutions: Find **all** minimal-size subsets, s.t. $S \subseteq F$, s.t. Ind $(T; F \setminus \{S\} \mid S)$
 - Not all minimal-size subsets have to have the same size!
- Much less studied problem

See KIAMB (Peña et al., 2007), TIE* (Statnikov et al., 2013), SES (Tsamardinos et al., 2012) & (Lagani et al., 2017) for current approaches.

Multiple Feature Selection (II)

- Related to stability of solutions!
- With finite sample, find all solutions that are "statistically indistinguishable"
 - $_{ extstyle o}$ Possible definitions of indistinguishable feature subsets S_{1} and S_{2}
 - Performance Equivalence: performance metrics on predictions are the same (in a statistical sense) given the learning method
 - Model Equivalence: conditional distribution of predictions is the same given the learning method (independent of performance metric)
 - Information Equivalence: conditional distribution of predictions is the same (independently of performance metric and learner)

A Taxonomy of Feature Types (I)

- X provides no information for T in all contexts:
 - o If Ind(X; T | \mathbb{Z}), $\forall \mathbb{Z} \subseteq \mathbb{F}$
 - Then X is irrelevant

- X in all solutions (Markov Blankets)
 - o If $\forall S \subseteq \mathbf{F}$ s.t., S minimal, $\operatorname{Ind}(\mathbf{F} \backslash \mathbf{S}; T \mid \mathbf{S})$, then $X \subseteq S$
 - Then X indispensable

A Taxonomy of Feature Types (II)

- X not indispensable, but X in some solutions
 - The information provided by X is necessary for optimal prediction, yet, it can be substituted with other features
 - X replaceable
 - Replaceable features will not be stable!
- o X not irrelevant, or indispensable, or replaceable
 - o X provides information for predicting T in some context (conditioned on some $Z \subseteq \mathbb{F}$), but not required
 - Then X is redundant
- Older classification to irrelevant, weakly relevant, strongly relevant [Kohavi & John, Artificial Intelligence, 97, 1-2,1997] coincides with irrelevant, redundant, indispensable when solution is unique

Causal models

Bayesian Networks (BNs)

Directed Acyclic Graph ${\cal G}$

 $\mathsf{JPD}(V)$: \mathcal{P}

		CVD		
Yellow Teeth	Smoking	Υ	N	
Υ	Υ	0.17	0.06	0.13
N	Υ	0.06	0.02	0.08
Υ	N	0.02	0.06	0.08
N	N	0.15	0.46	0.61
		0.4	0.6	1

(Causal) Markov Condition (MC):

Every variable is **independent** of its **non-descendants** given its **parents**Causal interpretation: substitute "direct cause" for "parent" and "non-effect" for "non-descendant"

Bayesian Networks (BNs)

Directed Acyclic Graph G

 $\mathsf{JPD}(V)\colon \mathcal{P}$

		CVD		
Yellow Teeth	Smoking	Υ	N	
Υ	Υ	0.17	0.06	0.13
N	Υ	0.06	0.02	0.08
Υ	N	0.02	0.06	0.08
N	N	0.15	0.46	0.61
		0.4	0.6	1

(Causal) Markov Condition (MC):

Every variable is **independent** of its **non-descendants** given its **parents**Causal interpretation: substitute "direct cause" for "parent" and "non-effect" for "non-descendant"

Markov Condition:

Every variable is independent of its non-descendants given its parents.

 $Ind(Y, Z \mid X)$

Markov Condition:

Every variable is independent of its non-descendants given its parents.

 $Ind(Y, Z \mid X)$

Markov Condition:

Every variable is independent of its non-descendants given its parents.

Faithfulness Assumption:

Independences stem **only** from the network structure, **not the parameterization** of the distribution.

 $Ind(Y, Z \mid X)$

 $Dep(Y,Z \mid \emptyset)$

 $Dep(X,Z \mid \emptyset)$

 $Dep(X,Z \mid Y)$

 $Dep(Y, X \mid \emptyset)$

 $Dep(Y, X \mid Z)$

Markov Condition:

Every variable is independent of its non-descendants given its parents.

Faithfulness Assumption:

Independences stem **only** from the network structure, **not the parameterization** of the distribution.

Ind(Y, Z | X)

 $Dep(Y, Z \mid \emptyset)$

 $Dep(X,Z \mid \emptyset)$

 $Dep(X,Z \mid Y)$

 $Dep(Y,X \mid \emptyset)$

 $Dep(Y, X \mid Z)$

Markov Condition:

Every variable is independent of its non-descendants given its parents.

Faithfulness Assumption:

Independences stem **only** from the network structure, **not the parameterization** of the distribution.

Some independencies are <u>determined</u> explicitly by the MC, some are entailed using probability theory

All independencies in **J** can be identified in **G** using the graphical criterion of **d-separation**.

Example

- o You have an installed alarm.
- Burglars set off the alarm.
- Earthquakes set of the alarm.
- When the alarm goes off, one of your neighbors (John or Mary) may call you.

A note on Faithfulness

Sunscreen (directly) causally reduces your chances of melanoma Sunscreen makes people stay longer in the sun, which increases the chances of melanoma

Faithfulness Violation:

The parameters are set so associations cancel each other out!

Causality and the feature selection

, MakeModel, §

- Markov Blanket
 - Neighbors (parents and children) of T
 - Spouses of T

, MakeModel, §

- Markov Blanket
 - Neighbors (parents and children) of T
 - Spouses of T

, MakeModel, §

- Markov Blanket
 - Neighbors (parents and children) of T
 - Spouses of T

, MakeModel, §

- Markov Blanket
 - Neighbors (parents and children) of T
 - Spouses of T

, MakeModel, §

Spouses = nodes with common children

- Markov Blanket
 - Neighbors (parents and children) of T
 - Spouses of T

:Target :Neighbors :Spouses

, MakeModel, §

- Markov Blanket
 - Neighbors (parents and children) of T
 - Spouses of T

, MakeModel, §

- Markov Blanket:
 - Neighbors (parents and children) of T
 - Spouses of T
- Theorem: The Markov Blanket of T is unique in Faithful distributions
- In distributions faithful to a Bayesian Network
 - Markov Blanket = indispensable
 - Non-Markov Blanket features connected with a path to T are redundant
 - Features not connected with a path to
 T are irrelevant
 - There are no replaceable features

What is the Markov Blanket of `MakeModel` with latent variables?

Nodes in boxes not measured

 Collider path = path where all <u>intermediate</u>, <u>observed</u> nodes (if any) are colliders

Markov Blanket

All nodes connected to T
 with a collider path

What is the Markov Blanket of `MakeModel` with latent variables?

 Nodes in boxes not measured

 Collider path = path where all <u>intermediate</u>, <u>observed</u> nodes (if any) are colliders

Markov Blanket

All nodes connected to T
 with a collider path

What is the Markov Blanket of `MakeModel` with latent variables?

Nodes in boxes not measured

 Collider path = path where all <u>intermediate</u>, <u>observed</u> nodes (if any) are colliders

Markov Blanket

All nodes connected to T
 with a collider path

 Nodes in boxes not measured

 Collider path = path where all <u>intermediate</u>, <u>observed</u> nodes (if any) are colliders

Markov Blanket

All nodes connected to T
 with a collider path

22

Nodes in boxes not measured

 Collider path = path where all <u>intermediate</u>, <u>observed</u> nodes (if any) are colliders

Markov Blanket

All nodes connected to T with a collider path

- Nodes in boxes not measured
- Subtleties: paths are to be calculated on the marginal of the Bayesian Network (called a Maximal Ancestral Graph)
- Cushioning becomes a Child of T in the marginal network
 - Needs theory of marginal of Bayesian Networks: <u>Maximal</u> <u>Ancestral Graphs</u>
- Markov Blanket
 - All nodes connected to T with a collider path

- Nodes in boxes not measured
- Subtleties: paths are to be calculated on the marginal of the Bayesian Network (called a Maximal Ancestral Graph)
- Cushioning becomes a Child of T in the marginal network
 - Needs theory of marginal of Bayesian Networks: <u>Maximal</u> <u>Ancestral Graphs</u>
- Markov Blanket

 All nodes connected to T with a collider path

- Nodes in boxes not measured
- Subtleties: paths are to be calculated on the marginal of the Bayesian Network (called a Maximal Ancestral Graph)
- Cushioning becomes a Child of T in the marginal network
 - Needs theory of marginal of Bayesian Networks: <u>Maximal</u> <u>Ancestral Graphs</u>
- Markov Blanket
 - All nodes connected to T with a collider path

- Nodes in boxes not measured
- Subtleties: paths are to be calculated on the marginal of the Bayesian Network (called a Maximal Ancestral Graph)
- Cushioning becomes a Child of T in the marginal network
 - Needs theory of marginal of Bayesian Networks: <u>Maximal</u> <u>Ancestral Graphs</u>
- Markov Blanket
 - All nodes connected to T with a collider path

Feature Selection Intrinsically Related to Causality!

- Causalities determine the solution to the **feature** selection problem
- Explains theoretically why
 Feature Selection is used for
 Knowledge Discovery
- Feature selection becomes a causal discovery problem

Selection Bias

- Extensions to the theory required under selection bias
- Markov Blanket needs to consider selection bias
- Case-Control studies have selection bias by design
- Selection bias modeled with additional node
- Selected distribution is P(data | Selection = 1)

Selection Bias

- Extensions to the theory required under selection bias
- Markov Blanket needs to consider selection bias
- Case-Control studies have selection bias by design
- Selection bias modeled with additional node
- Selected distribution is P(data | Selection = 1)

Causal Models in Biology

- Pros: identify the connections between feature selection and causality
- Pros: inspire us to design feature selection algorithms
- Cons: several other subtle assumptions to discover causality (see Geris, L. and Gomez-Cabrero, D. (2016). Uncertainty in Biology. Springer International Publishing, Chapter 3 for more)
- Cons: Bayesian Networks do not consider feedback cycles, selection bias, latent variables.
- Pros: However, major recent advances in causality remove assumptions
- o More Material:
 - <u>Tsamardinos KDD talk</u>
 [http://videolectures.net/kdd2017_tsamardinos_feature_selection/]
 - MXM R Package with numerous algorithms for all types of data

Stability and Replaceability

Replaceable Features and Knowledge Discovery

- Suppose genes {X, Y, Z} are a Markov Blanket of T
- Suppose genes {A, B, C, D} are also a Markov Blanket of T
 - both minimal and optimally predictive
 - {X, Y, Z} replaceable by {A, B, C, D}
- It is misleading to report to biologists "all you need to predict T is X, Y, Z, forget the rest
- Report all Markov Blankets
- Need Feature Selection algorithms that identify all solutions

Stability of Selection

- Even measuring stability is tricky and hard [Nogueira, L., Sechidis, K. and Brown, G.(2018)
 On the Stability of Feature Selection Algorithms, JMLR 18(174):1–54, 2018.]
- Replaceable features cause instability of selection, even asymptotically
- Example: X and Z exact copies of each other and belong to a Markov Blanket of T
 - For algorithms that guarantee a Markov Blanket (minimality of selection):
 During Cross-Validation either X or Z will be selected, but not both
 - Point: Can't throw away features that are selected "unstably"
 - Other algorithms: X and Z both selected, but importance weight split between the two
 - Lasso coefficients, Random Forest importance score
 - Point: Can't throw away features with low importance

More on Replaceable Features

- Replaceable features do not necessarily strongly correlate
 - Some algorithms try to cluster together strongly correlated features

[Grace, T.H., Tsamardinos, I., Raghu, V., Kaminski, N. and Benos V.P. (2015)T-RECS: Stable Selection of Dynamically Formed Groups of Features with Application to Prediction of Clinical Outcomes, Pac Symp Biocomput. 2015;20:431-442]

[Klasen, J., Barbez, E., Meier, L., Meinshausen, N., Bühlmann, P., Koornneef, M., Busch, W. and Schneeberger, K. (2016). A multimarker association method for genome-wide association studies without the need for population structure correction. Nature Communications, 7, p.13299.]

- \circ T = C

- Noise terms normally distributed and independent
- o X and Z replaceable for T provided that D_i and $ε_i$ have the same variance
- X and Z share a common predictive component for T and a distinct component.
- Correlation between X and Z can ranges within (0, 1].

Addressing Replaceability

- Use algorithms that return all solutions
 - **TIE*** [Statnikonv, A. and Lytkin I. N. (2014). Algorithms for Discovery of Multiple Markov Boundaries, JMLR. 2013 Feb; 14: 499–566.]
 - Lasso for multiple solutions [Pantazis, Y., Lagani, V., Charonyktakis, P., Tsamardinos, I. (2018)
 Multiple Equivalent Solutions for the Lasso. arXiv: 1710.04995]
 - Statistically Equivalent Signatures [Lagani, V., Athineou, G., Farcomeni, A., Tsagris, M. and Tsamardinos, I. (2017) Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets. Journal of statistical software]
 - Our new upcoming algorithm, stay tuned
- Importance (added value) of a feature
 - Assessed in a Markov Blanket (minimality imposed)
 - Build a model with and without the variable (individual contribution in the context of all other selected variables)

Applying Feature Selection

My advice to Practitioners (I)

- Good choice to try for most cases
 - Lasso [Tibshirani, Journal of the Royal Statistical Society. Series B Vol. 58, No. 1 1996], typically returns more features, but better performance. Linear.
- Large sample, very few features
 - Use <u>exhaustive</u> search
- Large sample, few features
 - Optimization Lens, Annals of Statistics, 44, 2016]
- Large sample relative to total number of features:
 - Use <u>Backward</u> Search

My advice to Practitioners (II)

- Large sample relative to the expected size of Markov Blanket
 - Use Forward-Backward with Early Dropping (FBED¹) and 2 runs (Borboudakis & Tsamardinos, 2017, https://arxiv.org/abs/1705.10770)
 - Generalized versions of Orthogonal Matching Pursuit [Tsagris, M. (2018) Guide on performing selection with R package, https://cran.rproject.org/web/packages/MXM/vignettes/FS_guide.pdf]
- Small sample, can only condition with enough statistical power on k features
 - Use MMPC, SES [Tsamardinos et al., : ACM SIGKDD, 2003]
- Huge sample, huge dimensionality: our latest algorithm for Big Data Feature Selection [Tsamardinos et al. Massively-Parallel Feature Selection for Big Data, https://arxiv.org/abs/1708.07178]
- After feature selection: Give problem to power classifiers (SVMs, Random Forests, Gradient Boosting Trees, GPs)

Reminder

- Feature Selection is part of the pipeline
 - Needs to be CVed and tuned
- Which features to return: the ones selected by the optimal configuration on all data
- Try numerous algorithms

The MXM R Package

- Efficient implementations of (some) tests and feature selection algorithms
- Algorithms: Backward Search, Forward-Backward, FBED, MMPC, MMMB, SES (for multiple solutions)
- Conditional Independence Tests available

Target	Predicting features	Test
Continuous	Continuous	Pearson (robust) Correlation or Spearman
Continuous	Categorical/continuous	Linear (robust) regression or quantile (median) regression
Categorical	Categorical	G ² test of independence
Proportions (between 0 and 1)	Categorical/continuous	Beta regression or linear (robust) regression or quantile (median) regression
Counts	Categorical/continuous	Poisson or Negative binomial regression
Zero inflated counts	Categorical/continuous	Zero inflated Poisson regression
Survival	Categorical/continuous	Cox, Weibull or exponential regression
Binary	Categorical/continuous	Logistic regression
Nominal	Categorical/continuous	Multinomial regression
Ordinal	Categorical/continuous	Ordinal regression
Clustered continuous, binary or counts	Continuous	Mixed models
Case-control	Categorical/continuous	Conditional logistic regression

Summary

- Feature selection is a major primary task
- Features are partitioned to indispensable, replaceable, redundant, and irrelevant
- A Markov Blanket is a minimal-size, optimally predictive set; the solution to the feature selection problem
- Typically, there exist (or are statistically equivalent) multiple Markov Blankets!
- Causal modeling connects feature selection and causality
- Don't just throw away features with low importance weight
- Stability should consider the presence of multiple solutions
- Practical advise was provided

Hyper-parameter search strategies

Problem definition

o Identifying the hyper-parameters configuration $\theta^* \in \Theta$ that provides the best performance on $\mathbf{D} = \{\langle \mathbf{x}_i, \mathbf{y}_i \rangle\}$

- o Main issues:
 - o The number of possible configurations $|\Theta|$ is high or infinite
 - Not all hyper-parameter configurations are admissible or meaningful (conditional hyper-parameters)
 - Evaluating a single configuration could be time consuming

Number of hyper-parameters

- Multiple learners, each with their own set of hyperparameters
- <u>Example I: Weka Software</u>
 - 27 learners (up to 10 hyper-params each)
 - o 10 meta-methods
 - 2 ensemble method
 - At least 786 hyper-params in total

- Example II: scikit-learn
 - 15 learners (59 hyperparams in total)
 - 13 feature pre-processor
 - 4 data pre-processor
 - At least 110 hyper-params in total

Conditional hyper-parameters

- Some hyper-params are meaningful only conditionally to the activations of other hyper-parameters
- Example: Support Vector Machines (SVMs)
 - Unconditional hyper-parameter: cost factor C
 - Unconditional hyper-parameter: kernel function (e.g., RBF, polynomial)
 - \circ Conditional hyper-param: tuning factor γ (only for RBF kernel)
 - Conditional hyper-param: degree d(only for polynomial kernel)

Evaluating single configurations

- A performance estimation protocol is required, e.g.:
 - hold-out
 - cross validation

 Evaluating a single configuration can take from < 1 sec to hours, days or more (depending by the problem)

How to identify the optimal hyperparameter configuration θ^*

Exhaustively evaluating all configurations is not feasible

 A strategy for efficiently search in the space of possible configurations Θ is required

Commonly used hyper-parameter search strategies

Orid search: static

Random search: dynamic, but naïve

- Optimization methods:
 - Bayesian optimization, dynamic

Grid search

Evaluating a fixed number of configurations, usually

regularly distributed across Θ

Simple example:

 2 real-value hyperparameters

 5 values to investigate per each hyper-parameter

25 configurations in total

Grid search

Evaluating a fixed number of configurations, usually

regularly distributed across 0

Simple example:

 2 real-value hyperparameters

- 5 values to investigate per each hyper-parameter
- 25 configurations in total

Random search

o Picking configurations at random across Θ, until some criterion (e.g., time limit) is satisfied Good

Random search

o Picking configurations at random across Θ, until some criterion (e.g., time limit) is satisfied Good

Optimization methods

- o A whole branch of mathematics / engineering focus on identifying optimal solution(s) θ^* out of a candidate set Θ.
- Optimization methods applied on the problem of hyper-parameter settings include
 - o Genetic algorithm [Olson et at., GECCO '16, 2016]
 - Particle swarm optimization [Ye, PloS ONE 12(12), 2017]
 - Optimization, pp. 507–523, 2011]

 Bayesian (global) optimization [Hutter et al., Learning and Intelligent
- Major difference from standard optimization: the objective function value has uncertainty!

Bayesian optimization

- Bayesian optimization (BO) methods have proven to be particularly effective for hyper-parameter search
- BO algorithm general schema:
 - 1. Select a configuration θ_i to evaluate
 - 2. Compute the performance value p_i corresponding to θ_i
 - 3. Use $\{\langle \theta_1, p_1 \rangle, \dots, \langle \theta_i, p_i \rangle\}$ to estimate the function $\Phi: \Theta \to R$ linking configurations to performance estimates
 - 4. If some criterion (e.g. time limit) is satisfied, return the best configuration θ^* ; otherwise go back to 1.

BO intuitive example

 \circ A single hyper-parameter θ

Optimal, minimal

loss for $\theta = 0$

- The performance is computed in terms of loss L
- The function $\Phi: x \to y$ is unknown and must be estimated

BO operation at iteration i = 7

- o At iteration i = 7, there are already 6 θ values where L has been evaluated (red points)
- o The 6 red points $\{\langle \theta_1, L_1 \rangle, \dots, \langle \theta_6, L_6 \rangle\}$ allow to approximate the function Φ (solid line) with $\widehat{\Phi}$ (dotted line)
- o The grey area indicate the uncertainty around the estimated $\hat{\Phi}$

BO operation at iteration i = 7

o The BO algorithm next suggests to evaluate L for the θ value marked in blue

- The blue point is identified taking into account:
 - The expected reduction in loss (the larger the better, i.e., exploitation)
 - The uncertainty of $\widehat{\Phi}$ (the larger the better, i.e., exploration)

BO operation at iteration i = 8

 L was evaluated at the point proposed at iteration 7 (now in yellow)

 \circ $\widehat{\Phi}$ was re-estimated, with considerably less uncertainty

 A new point (blue) is again suggested for the next iteration

Take Home Messages

- Hyper-parameter search is an important step in machine learning
 - Average performance improvement of 45% [Thornton et al., Auto-WEKA, 2013]
- While optimizing hyper-parameters can be a daunting tasks, efficient and effective solution for automating this process are under continuous development.

References

- Pearl, on logic and probability, Comput. Intel. 1988
- Welch, The Welch-James Approximation to the Distribution of the Residual Sum of Squares in a Weighted Linear Regression, Biometrika, 69(2),1982
- Olson R.S., Urbanowicz R.J., Andrews P.C., Lavender N.A., Kidd L.C., Moore J.H. (2016) Automating Biomedical Data Science Through Tree-Based Pipeline Optimization. In: Squillero G., Burelli P. (eds) Applications of Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science, vol 9597. Springer, Cham
- Ye F (2017) Particle swarm optimization-based automatic parameter selection for deep neural networks and its applications in large-scale and high-dimensional data. PLoS ONE 12(12): e0188746.
- Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Sequential model-based optimization for general algorithm configuration." International Conference on Learning and Intelligent Optimization. Springer, Berlin, Heidelberg, 2011.
- Thornton, Chris, et al. "Auto-WEKA: Combined selection and hyperparameter optimization of classification algorithms." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2013.
- Kohavi & John, "Wrappers for feature subset selection" Artificial Intelligence, 97, 1-2,1997.
- o Geris, L. and Gomez-Cabrero, D. (2016). *Uncertainty in Biology*. Springer International Publishing, Chapter 3

References

- Peña J, Nilsson R, Björkegren J, Tegnér J. Towards scalable and data efficient learning of markov boundaries.
 International Journal of Approximate Reasoning, 2007;45(2):211–232
- TIE*: Statnikonv, A. and Lytkin I. N. (2014). Algorithms for Discovery of Multiple Markov Boundaries, JMLR. 2013 Feb; 14: 499–566
- Statistically Equivalent Signatures: Lagani, V., Athineou, G., Farcomeni, A., Tsagris, M. and Tsamardinos, I.
 (2017) Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets. Journal of statistical software
- Tsamardinos KDD talk [http://videolectures.net/kdd2017_tsamardinos_feature_selection/]
- o MXM R Package (https://cran.r-project.org/web/packages/MXM/index.html)
- Nogueira, L., Sechidis, K. and Brown, G.(2018) On the Stability of Feature Selection Algorithms, JMLR 18(174):1–54, 2018
- Grace, T.H., Tsamardinos, I., Raghu, V., Kaminski, N. and Benos V.P. (2015)T-RECS: Stable Selection of Dynamically Formed Groups of Features with Application to Prediction of Clinical Outcomes, Pac Symp Biocomput. 2015;20:431-442
- Klasen, J., Barbez, E., Meier, L., Meinshausen, N., Bühlmann, P., Koornneef, M., Busch, W. and Schneeberger, K. (2016). A multi-marker association method for genome-wide association studies without the need for population structure correction. Nature Communications, 7, p.13299

References

- Lasso for multiple solutions: Pantazis, Y., Lagani, V., Charonyktakis, P., Tsamardinos, I. (2018) Multiple Equivalent Solutions for the Lasso. arXiv: 1710.04995
- Tibshirani, Journal of the Royal Statistical Society. Series B Vol. 58, No. 1 1996
- o Bertsimas et al., Best Subset Selection via a Modern Optimization Lens, Annals of Statistics, 44, 2016
- Borboudakis & Tsamardinos, 2017, Forward-Backward Selection with Early Dropping: https://arxiv.org/abs/1705.10770
- Tsagris, M. (2018) Guide on performing selection with R package, https://cran.r-project.org/web/packages/MXM/vignettes/FS_guide.pdf
- Tsamardinos et al., Time and sample efficient discovery of Markov blankets and direct causal relations ACM SIGKDD, 2003
- Tsamardinos et al. Massively-Parallel Feature Selection for Big Data, https://arxiv.org/abs/1708.07178

End of Part III