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Feature Selection and 
Knowledge Discovery



Messages

o Feature Selection is arguably the main tool for knowledge discovery

o Causal models help understand the feature selection problem, in a non-parametric way

o Causally-inspired algorithms:

o Provide theoretical guarantees

o Applicable to any type of data for which a conditional independence test is available

o Scale up to tens of millions of features and tens of millions of rows (Big Volume Data)

o Competitive predictive performance against alternatives (e.g., Lasso)

o Can find multiple, statistically-equivalent solutions

o Solution(s) has intuitive causal interpretation

o Robust, efficient implementations available
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Why Feature Selection?

o Feature selection is the main tool for knowledge discovery with data 
analysis

o Often it the primary goal of the analysis; the predictive model is only a side-
product

o Provides intuition to “what matters” for prediction
o Connected to the causal mechanisms generating the data (Tsamardinos, 

Aliferis, AI&STATs 2003)
o Dimensionality Reduction, e.g., PCA, is harder to interpret

o Feature Selection = Knowledge Discovery

o Also, may actually improve predictive performance
o By removing irrelevant or redundant features, learning algorithms are 

facilitated
o Reduces the cost of storing, computing, measuring, processing the 

data
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Defining Feature Selection (Oracle)

o Ind(T; X | Z): X independent of T conditioned on (given) Z

o Single Solution: Find a minimal-size feature subset S F, s.t. Ind(T ; F\{S}| S)

o Equivalently: P(T | S) = P(T | F)

o Selected features S do not change the conditional probability of T

o Selected features S carry all information to predict/diagnose T

o There is no subset S  S s.t. P(T | S) = P(T | S)

o Definition requires knowledge of P(T | F)

o S : a minimal-size set that renders all other features conditionally independent of T

o S is called a Markov Blanket of T [Markov Boundary in Pearl, Comput. Intel,1988]

o NP-complete problem even for linear regression [Welch, Biometrika, 69(2),1982]
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Defining Feature Selection (no Oracle)

o Single Solution:

o Maximize performance of model built 
with features S using learner f, s.t. |S| is minimal

o No knowledge of conditional distribution of T, 
need to estimate from finite sample
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Defining Feature Selection: Subtleties

o “Maximizing performance”: solution depends on performance metric

o Example, P(T+ | X+) = 0.6, P(T+ | X-) = 0.7. and metric is accuracy: accuracy is 
maximized without X!

o “using learner f”: solution depends on learner

o Example by [Kohavi & John, 1997]

o T = X + constant + ε, ε ~N(0,1), Y = 1 always, and learner f is a linear classifier
without a constant term

o Optimal model fit with f as T = X + constant x Y, Y participates in the solution!

o Sufficient conditions for finite-sample solution to converge to the asymptotic one

o Learner should converge to (learn) P(T | S) for a solution S

o Performance metric (loss) is optimized asymptotically only when Ind(T ; F\{S}| S)
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Multiple Feature Selection (Ι)

o Important problem!

o Knowledge discovery: Misleading to inform a biologist that only genes in S are 
“important” when other genes S could replace them!

o Cost-aware feature selection: when features have measurement cost, give 
options what to measure

o Multiple Solutions: Find all minimal-size subsets, s.t. S F, s.t. Ind(T ; F\{S}| S)

o Not all minimal-size subsets have to have the same size!

o Much less studied problem

See KIAMB (Peña et al., 2007), TIE* (Statnikov et al., 2013), SES (Tsamardinos et al., 
2012) & (Lagani et al., 2017) for current approaches.
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Multiple Feature Selection (ΙΙ)

o Related to stability of solutions!

o With finite sample, find all solutions that are “statistically indistinguishable”

o Possible definitions of indistinguishable feature subsets S1 and S2

o Performance Equivalence: performance metrics on predictions are the 
same (in a statistical sense) given the learning method

o Model Equivalence: conditional distribution of predictions is the same given 
the learning method (independent of performance metric)

o Information Equivalence: conditional distribution of predictions is the same 
(independently of performance metric and learner)
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A Taxonomy of Feature Types (I)

o X provides no information for T in all contexts:

o If Ind(X ; T | Z), Z  F

o Then X is irrelevant

o X in all solutions (Markov Blankets)

o If S  F s.t., S minimal, Ind(F\S ; T | S), then X  S

o Then X indispensable
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A Taxonomy of Feature Types (II)

o X not indispensable, but X in some solutions

o The information provided by X is necessary for optimal prediction, yet, it can be 
substituted with other features

o X replaceable

o Replaceable features will not be stable!

o X not irrelevant, or indispensable, or replaceable

o X provides information for predicting T in some context (conditioned on some Z 
F), but not required

o Then X is redundant

o Older classification to irrelevant, weakly relevant, strongly relevant [Kohavi & John, Artificial 

Intelligence, 97, 1-2,1997] coincides with irrelevant, redundant, indispensable when solution 
is unique
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Causal models
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Bayesian Networks (BNs)
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A P(MC | A)

T 0.85

F 0.4

Example

o You have an installed alarm.

o Burglars set off the alarm.

o Earthquakes set of the alarm.

o When the alarm goes off, one of 
your neighbors (John or Mary) 
may call you.
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Burglar Earthquake

Alarm

John Calls

Example by J.Pearl

P(B)

0.001

P(E)

0.002

B E P(A|B, E)

T T 0.95

T F 0.94

F T 0.29

F F 0.001
A P(JC|A)

T 0.7

F 0.2

Mary Calls



A note on Faithfulness 
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Sunscreen

Sun 
exposure

Melanoma

Faithfulness Violation:

The parameters are set so associations cancel each other out!

Sunscreen (directly) causally reduces your chances of melanoma

Sunscreen makes people stay longer in the sun, which increases the chances of 

melanoma



Causality and the 
feature selection
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What is the Markov Blanket of 
`MakeModel`?

o Spouses = nodes with 
common children

o Markov Blanket

o Neighbors (parents 
and children) of T

o Spouses of T
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What is the Markov Blanket of 
`MakeModel`?

o Markov Blanket:

o Neighbors (parents and children) of T

o Spouses of T

o Theorem: The Markov Blanket of T is 
unique in Faithful distributions

o In distributions faithful to a Bayesian 
Network

o Markov Blanket = indispensable

o Non-Markov Blanket features 
connected with a path to T are 
redundant

o Features not connected with a path to 
T are irrelevant

o There are no replaceable features

21
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What is the Markov Blanket of `MakeModel` 
with latent variables?

o Nodes in boxes not 
measured

o Collider path = path where 
all intermediate, observed 
nodes (if any) are colliders

o Markov Blanket

o All nodes connected to T
with a collider path

22
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What is the Markov Blanket of `MakeModel`
with latent variables?

o Nodes in boxes not measured

o Subtleties: paths are to be 
calculated on the marginal of 
the Bayesian Network (called a 
Maximal Ancestral Graph)

o Cushioning becomes a Child of 
T in the marginal network

o Needs theory of marginal of 
Bayesian Networks: Maximal 
Ancestral Graphs

o Markov Blanket

o All nodes connected to T with 
a collider path
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Feature Selection Intrinsically Related 
to Causality!

o Causalities determine the 
solution to the feature 
selection problem

o Explains theoretically why 
Feature Selection is used for 
Knowledge Discovery

o Feature selection becomes 
a causal discovery problem
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Selection Bias

o Extensions to the theory 
required under selection bias

o Markov Blanket needs to 
consider selection bias

o Case-Control studies have 
selection bias by design

o Selection bias modeled with 
additional node

o Selected distribution is 
P(data | Selection = 1)

Age Sex

Disease

Selection

Selection = 1 for all 

samples

P(S=1 | Disease = True) = 

high

P(S=1 | Disease = False) = 

low

Disease more likely in 

elder women
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Causal Models in Biology

o Pros: identify the connections between feature selection and causality

o Pros: inspire us to design feature selection algorithms

o Cons: several other subtle assumptions to discover causality (see Geris, L. and 

Gomez-Cabrero, D. (2016). Uncertainty in Biology. Springer International Publishing, Chapter 3 for 
more)

o Cons: Bayesian Networks do not consider feedback cycles, selection bias, 
latent variables.

o Pros: However, major recent advances in causality remove assumptions

o More Material:

o Tsamardinos KDD talk
[http://videolectures.net/kdd2017_tsamardinos_feature_selection/]

o MXM R Package with numerous algorithms for all types of data



Stability and 
Replaceability



Replaceable Features and 
Knowledge Discovery

o Suppose genes {X, Y, Z} are a Markov Blanket of T

o Suppose genes {A, B, C, D} are also a Markov Blanket of T

o both minimal and optimally predictive

o {X, Y, Z} replaceable by {A, B, C, D}

o It is misleading to report to biologists “all you need to predict 
T is X, Y, Z, forget the rest

o Report all Markov Blankets

o Need Feature Selection algorithms that identify all solutions



Stability of Selection

o Even measuring stability is tricky and hard [Nogueira, L., Sechidis, K. and Brown, G.(2018) 
On the Stability of Feature Selection Algorithms, JMLR 18(174):1−54, 2018.]

o Replaceable features cause instability of selection, even asymptotically

o Example: X and Z exact copies of each other and belong to a Markov Blanket 
of T

o For algorithms that guarantee a Markov Blanket (minimality of selection): 
During Cross-Validation either X or Z will be selected, but not both

o Point: Can’t throw away features that are selected “unstably”

o Other algorithms: X and Z both selected, but importance weight split 
between the two

o Lasso coefficients, Random Forest importance score

o Point: Can’t throw away features with low importance



More on Replaceable Features

o Replaceable features do not necessarily strongly correlate

o Some algorithms try to cluster together strongly correlated features

[Grace, T.H., Tsamardinos, I., Raghu, V., Kaminski, N. and Benos V.P. (2015)T-RECS: Stable Selection of Dynamically Formed 
Groups of Features with Application to Prediction of Clinical Outcomes, Pac Symp Biocomput. 2015;20:431-442]

[Klasen, J., Barbez, E., Meier, L., Meinshausen, N., Bühlmann, P., Koornneef, M., Busch, W. and Schneeberger, K. (2016). A multi-
marker association method for genome-wide association studies without the need for population structure correction. Nature 
Communications, 7, p.13299.]

o T = C

o X = C + D1 + 1

o Z = C + D2 + 2

o Noise terms normally distributed and independent

o X and Z replaceable for T provided that Di and i have the same variance

o X and Z share a common predictive component for T and a distinct component.

o Correlation between X and Z can ranges within (0, 1].



Addressing Replaceability

o Use algorithms that return all solutions

o TIE* [ Statnikonv, A. and Lytkin I. N. (2014). Algorithms for Discovery of Multiple Markov 
Boundaries, JMLR. 2013 Feb; 14: 499–566.]

o Lasso for multiple solutions [ Pantazis, Y., Lagani, V., Charonyktakis, P., Tsamardinos, I. (2018) 

Multiple Equivalent Solutions for the Lasso. arXiv: 1710.04995 ]

o Statistically Equivalent Signatures [Lagani, V., Athineou, G., Farcomeni, A., Tsagris, M. 
and Tsamardinos, I. (2017) Feature Selection with the R Package MXM: Discovering Statistically 
Equivalent Feature Subsets. Journal of statistical software]

o Our new upcoming algorithm, stay tuned

o Importance (added value) of a feature

o Assessed in a Markov Blanket (minimality imposed)

o Build a model with and without the variable (individual contribution in the context of 
all other selected variables)



Applying Feature 
Selection
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My advice to Practitioners (I)

o Good choice to try for most cases
o Lasso [Tibshirani, Journal of the Royal Statistical Society. Series B Vol. 58, No. 1 1996], 

typically returns more features, but better performance. 
Linear.

o Large sample, very few features
o Use exhaustive search

o Large sample, few features
o Use exact methods [Bertsimas et al., Best Subset Selection via a Modern 

Optimization Lens, Annals of Statistics, 44, 2016]

o Large sample relative to total number of features:
o Use Backward Search
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My advice to Practitioners (II)

o Large sample relative to the expected size of Markov Blanket

o Use Forward-Backward with Early Dropping (FBED1) and 2 runs (Borboudakis & 
Tsamardinos, 2017, https://arxiv.org/abs/1705.10770)

o Generalized versions of Orthogonal Matching Pursuit [Tsagris, M. (2018) Guide on 
performing selection with R package, https://cran.r-
project.org/web/packages/MXM/vignettes/FS_guide.pdf]

o Small sample, can only condition with enough statistical power on k features

o Use MMPC, SES [Tsamardinos et al., : ACM SIGKDD, 2003]

o Huge sample, huge dimensionality: our latest algorithm for Big Data Feature 
Selection [Tsamardinos et al. Massively-Parallel Feature Selection for Big Data, 
https://arxiv.org/abs/1708.07178]

o After feature selection: Give problem to power classifiers (SVMs, Random Forests, 
Gradient Boosting Trees, GPs)
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Reminder

o Feature Selection is part of the pipeline

o Needs to be CVed and tuned

o Which features to return: the ones selected by the 
optimal configuration on all data

o Try numerous algorithms



The MXM R Package

o Efficient implementations of (some) tests and feature selection algorithms

o Algorithms: Backward Search, Forward-Backward, FBED, MMPC, MMMB,
SES (for multiple solutions)

o Conditional Independence Tests available

37

Target Predicting features Test

Continuous Continuous Pearson (robust) Correlation or Spearman

Continuous Categorical/continuous Linear (robust) regression or quantile (median) regression

Categorical Categorical G2 test of independence

Proportions (between 0 and 1) Categorical/continuous Beta regression or linear (robust) regression or quantile (median) regression

Counts Categorical/continuous Poisson or Negative binomial regression

Zero inflated counts Categorical/continuous Zero inflated Poisson regression

Survival Categorical/continuous Cox, Weibull or exponential regression

Binary Categorical/continuous Logistic regression

Nominal Categorical/continuous Multinomial regression

Ordinal Categorical/continuous Ordinal regression

Clustered continuous, binary or counts Continuous Mixed models

Case-control Categorical/continuous Conditional logistic regression

https://CRAN.R-project.org/package=MXM

https://cran.r-project.org/package=MXM


Summary

o Feature selection is a major primary task

o Features are partitioned to indispensable, replaceable, 
redundant, and irrelevant

o A Markov Blanket is a minimal-size, optimally predictive set; 
the solution to the feature selection problem

o Typically, there exist (or are statistically equivalent) multiple 
Markov Blankets!

o Causal modeling connects feature selection and causality

o Don’t just throw away features with low importance weight

o Stability should consider the presence of multiple solutions

o Practical advise was provided



Hyper-parameter
search strategies



Problem definition

o Identifying the hyper-parameters configuration 𝜃∗ ∈ Θ
that provides the best performance on D = {xi, yi}

o Main issues:

o The number of possible configurations Θ is high or infinite

o Not all hyper-parameter configurations are admissible or 
meaningful (conditional hyper-parameters)

o Evaluating a single configuration could be time consuming 



Number of hyper-parameters

o Multiple learners, each with their own set of hyper-
parameters

o Example I: Weka Software

o 27 learners (up to 10 
hyper-params each)

o10 meta-methods

o 2 ensemble method

o At least 786 hyper-params
in total

o Example II: scikit-learn

o 15 learners (59 hyper-
params in total)

o 13 feature pre-processor

o 4 data pre-processor

o At least 110 hyper-params
in total



Conditional hyper-parameters

o Some hyper-params are meaningful only conditionally 
to the activations of other hyper-parameters

o Example: Support Vector Machines (SVMs)

o Unconditional hyper-parameter: cost factor C

o Unconditional hyper-parameter: kernel function (e.g., RBF, 
polynomial)

o Conditional hyper-param: tuning factor 𝛾 (only for RBF kernel)

o Conditional hyper-param: degree d(only for polynomial kernel)



Evaluating single configurations

o A performance estimation protocol is required, e.g.:

o hold-out

o cross validation

o Evaluating a single configuration can take from < 1 sec 
to hours, days or more (depending by the problem)



How to identify the optimal hyper-
parameter configuration 𝜃∗

o Exhaustively evaluating all configurations is not feasible

o A strategy for efficiently search in the space of possible 
configurations Θ is required



Commonly used hyper-parameter 
search strategies

o Grid search: static

o Random search: dynamic, but naïve

o Optimization methods:

o Bayesian optimization, dynamic



Grid search

o Evaluating a fixed number of configurations, usually 
regularly distributed across Θ

o Simple example:

o 2 real-value hyper-
parameters

o 5 values to investigate per 
each hyper-parameter

o 25 configurations in total

Hyper-parameter 1
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Random search

o Picking configurations at random across Θ, until some 
criterion (e.g., time limit) is satisfied
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Random search

o Picking configurations at random across Θ, until some 
criterion (e.g., time limit) is satisfied
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Optimization methods

o A whole branch of mathematics / engineering focus on 
identifying optimal solution(s) 𝜃∗ out of a candidate set 
Θ.

o Optimization methods applied on the problem of 
hyper-parameter settings include 
o Genetic algorithm [Olson et at., GECCO ‘16, 2016]

o Particle swarm optimization [Ye, PLoS ONE 12(12), 2017]

o Bayesian (global) optimization [Hutter et al., Learning and Intelligent 
Optimization, pp. 507–523, 2011]

o Major difference from standard optimization: the 
objective function value has uncertainty!



Bayesian optimization

o Bayesian optimization (BO) methods have proven to be 
particularly effective for hyper-parameter search

o BO algorithm general schema:

1. Select a configuration 𝜃𝑖 to evaluate

2. Compute the performance value 𝑝𝑖 corresponding to 𝜃𝑖
3. Use 𝜃1, 𝑝1, … , 𝜃𝑖 , 𝑝𝑖 to estimate the function Φ:Θ → 𝑅

linking configurations to performance estimates

4. If some criterion (e.g. time limit) is satisfied, return the best 
configuration 𝜃∗; otherwise go back to 1.



BO intuitive example

o A single hyper-parameter 𝜃

o The performance is computed in terms of loss L

o The function Φ: 𝑥 → 𝑦 is unknown and must be 
estimated

Optimal, minimal 
loss for 𝜃 = 0

𝜃

L



BO operation at iteration i = 7

𝜃

L

o At iteration i = 7, there are 
already 6 𝜃 values where L has 
been evaluated (red points)

o The 6 red points ሼ
ሽ

𝜃1, 𝐿1,
… , 𝜃6, 𝐿6 allow to 
approximate the function Φ
(solid line) with ෡Φ (dotted line)

o The grey area indicate the 
uncertainty around the 
estimated ෡Φ



BO operation at iteration i = 7

𝜃

L

o The BO algorithm next 
suggests to evaluate L for 
the 𝜃 value marked in blue

oThe blue point is identified 
taking into account:

oThe expected reduction in loss (the 
larger the better, i.e., exploitation)

oThe uncertainty of ෡Φ (the larger the 
better, i.e., exploration)



BO operation at iteration i = 8

𝜃

L

o L was evaluated at the 
point proposed at iteration 7 
(now in yellow)

o ෡Φ was re-estimated, with 
considerably less uncertainty

o A new point (blue) is again 
suggested for the next 
iteration



Take Home Messages

o Hyper-parameter search is an important step in 
machine learning

o Average performance improvement of 45% [Thornton et al., 

Auto-WEKA, 2013]

o While optimizing hyper-parameters can be a daunting 
tasks, efficient and effective solution for automating 
this process are under continuous development.



References
o Pearl, on logic and probability, Comput. Intel.1988

o Welch, The Welch-James Approximation to the Distribution of the Residual Sum of Squares in a Weighted Linear 
Regression, Biometrika, 69(2),1982

o Olson R.S., Urbanowicz R.J., Andrews P.C., Lavender N.A., Kidd L.C., Moore J.H. (2016) Automating Biomedical 
Data Science Through Tree-Based Pipeline Optimization. In: Squillero G., Burelli P. (eds) Applications of 
Evolutionary Computation. EvoApplications 2016. Lecture Notes in Computer Science, vol 9597. Springer, Cham

o Ye F (2017) Particle swarm optimization-based automatic parameter selection for deep neural networks and its 
applications in large-scale and high-dimensional data. PLoS ONE 12(12): e0188746.

o Hutter, Frank, Holger H. Hoos, and Kevin Leyton-Brown. "Sequential model-based optimization for general 
algorithm configuration." International Conference on Learning and Intelligent Optimization. Springer, Berlin, 
Heidelberg, 2011.

o Thornton, Chris, et al. "Auto-WEKA: Combined selection and hyperparameter optimization of classification 
algorithms." Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data 
mining. ACM, 2013.

o Kohavi & John, “Wrappers for feature subset selection”Artificial Intelligence, 97, 1-2,1997.

o Geris, L. and Gomez-Cabrero, D. (2016). Uncertainty in Biology. Springer International Publishing, Chapter 3



References
o Peña J, Nilsson R, Björkegren J, Tegnér J. Towards scalable and data efficient learning of markov boundaries. 

International Journal of Approximate Reasoning. 2007;45(2):211–232

o TIE* : Statnikonv, A. and Lytkin I. N. (2014). Algorithms for Discovery of Multiple Markov Boundaries, JMLR. 2013 
Feb; 14: 499–566

o Statistically Equivalent Signatures: Lagani, V., Athineou, G., Farcomeni, A., Tsagris, M. and Tsamardinos, I. 
(2017) Feature Selection with the R Package MXM: Discovering Statistically Equivalent Feature Subsets. Journal of 
statistical software

o Tsamardinos KDD talk [http://videolectures.net/kdd2017_tsamardinos_feature_selection/]

o MXM R Package (https://cran.r-project.org/web/packages/MXM/index.html)

o Nogueira, L., Sechidis, K. and Brown, G.(2018) On the Stability of Feature Selection Algorithms, JMLR 18(174):1−54, 
2018

o Grace, T.H., Tsamardinos, I., Raghu, V., Kaminski, N. and Benos V.P. (2015)T-RECS: Stable Selection of Dynamically 
Formed Groups of Features with Application to Prediction of Clinical Outcomes, Pac Symp Biocomput. 
2015;20:431-442

o Klasen, J., Barbez, E., Meier, L., Meinshausen, N., Bühlmann, P., Koornneef, M., Busch, W. and Schneeberger, K. 
(2016). A multi-marker association method for genome-wide association studies without the need for population 
structure correction. Nature Communications, 7, p.13299

http://videolectures.net/kdd2017_tsamardinos_feature_selection/
https://cran.r-project.org/web/packages/MXM/index.html


References

o Lasso for multiple solutions: Pantazis, Y., Lagani, V., Charonyktakis, P., Tsamardinos, I. (2018) Multiple 
Equivalent Solutions for the Lasso. arXiv: 1710.04995

o Tibshirani, Journal of the Royal Statistical Society. Series B Vol. 58, No. 1 1996

o Bertsimas et al., Best Subset Selection via a Modern Optimization Lens, Annals of Statistics, 44, 2016

o Borboudakis & Tsamardinos, 2017, Forward-Backward Selection with Early Dropping: 
https://arxiv.org/abs/1705.10770

o Tsagris, M. (2018) Guide on performing selection with R package, https://cran.r-
project.org/web/packages/MXM/vignettes/FS_guide.pdf

o Tsamardinos et al., Time and sample efficient discovery of Markov blankets and direct causal relations 
ACM SIGKDD, 2003

o Tsamardinos et al. Massively-Parallel Feature Selection for Big Data, https://arxiv.org/abs/1708.07178

https://arxiv.org/abs/1705.10770
https://cran.r-project.org/web/packages/MXM/vignettes/FS_guide.pdf
https://arxiv.org/abs/1708.07178


End of Part III


