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o Putting all together 06 The Just Add
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Tune and Estimate




Choices, choices, choices

o Multiple algorithms available and applicable for all
steps of the analysis (feature selection, classification,

etc.)
oEach algorithm has a set of ot

o Optimize choice of combinations of algorithms and
therot uni ng knobso



Hyper -Parameters vs. Parameters

o A parameter of a model (e.g., linear regression) is a quantity
directly estimated from the data

o0 Inlinearregression y=w;x,+ é w% +b,wo0s dmame
parameters, estimated from the data

0 A hyper -parameter of an algorithm is a quantity not
estimated by the data but set by the user

0 Determines the sensitivity of an algorithm to detecting patterns

0 A hyper -parameter may, of course, be estimated indirectly by
CV (then it becomes a parameter in the complete procedure)



Examples of Hyper -Parameters

0 K-Nearest Neighbors : K, distance function
0 Decision Trees : MaxPChance (level of pruning)

0 Support Vector Machines : Cost C, kernel K (each
one has its own hyper -parameters)

0 Univariate Feature Selection : p-value threshold
0 Lasso: regularization parameter lambda

0 Gaussian processes can have dozens of hyper -

parameters |[c. E. Rasmussen & C. K. I. Williams. "Gaussian Processes for Machine
Learning”, the MIT Press, 2006]



From Hyper -Parameters to
Configurations

o Which algorithm to choose can also be seen as a
hyper -parameter!

o Which data representation to use Is a hyper -parameter
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From Hyper -Parameters to
Configurations

o Which algorithm to choose can also be seen as a
hyper -parameter!

o Which data representation to use is a hyper  -parameter

o Point: all our choices can be represented with a
vector a of hyper -parameter values!




More algorithms vs. better tuning

0 Personal Experience:

oTuning of fl exi bl eismdregnaporadrit al gor
than trying a plethora of algorithms with default values

o Personal choices : SVMs, Random Forests, Gradient

Boosting Trees (can represent all functions), ensemble
methods

o Feature construction, data representation,

data transformations, more important than including more
learning algorithms
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Hyper -Parameters and Configurations

o Configuration : an instantiation of a learning
method f with specific hyper -parameter values.

0 A configuration coincides with a non :
hyperparameterized Ilearning method.

0 A configuration completely defines which
computations to perform all the way from data to model.
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Tuning vs Model Selection

0 Model selection (statistics):

oproduce sever al model s, on all the dat a,

o Typically, the selection is manual based on some criteria (fitting
+ simplicity, distribution of residuals, etc.)

0] Tuning [Tsamardinos et al. Machine Learning, 2018]

0 Tuning = configuration selection
0 Only one model is produced on all the data (no model selection)
oThe model Il s produced by the oObestd conf

ooBestd is found b-parametari ng t he hyper



Grid Hyper -parameter Search

0 A priori decide which algorithms to try in
each step

o A priori decide the values to try for
each hyper -parameter

o Try all combinations (full -factorial)
o Called Grid Search
o Tryvalues {0.01, 0.05, 0.1} for hp a
o Tryvalues{l, 2,3}forhp b

o0 Static hyper -parameter search
strategies predetermine the
configurations to try
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Example of Tune -n-Estimate
(the wrong way)

o Construct all models from each configuration f,i=2, e, 10
0 Select Best
0 Report its estimated performance

for eachconfiguration f

Perf , mode| 0= Hold-Out(D, f;)
end for

| = argmaxPerf
return a&Perf, mode]d



Construct all Models, Select Best

Algorithm Performance(Loss)

K-NN K=1 0.81

K=2 0.84

K=5 0.88

DT MaxPChance0.01 0.83
MaxPChance0.05 0.9

MaxPChance0.1 0.81

SB =0 0.75

|=1 0.83
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Construct all Models, Select Best

Algorithm Performance(Loss)

K-NN K=1 0.81

K=2 0.84

K=5 0.88

DT MaxPChance0.01 0.83
MaxPChance0.05 0.9

MaxPChance0.1 0.81

SB =0 0.75

=1 (83

Selected model




Construct all Models, Select Best

Algorithm Performance(Loss)

K-NN - Returned Estimate
(=2 ' (WRONG WAY)

K=5
DT MaxPChance0.01
MaxPChance0.05
MaxPChance0.1

SB =0
|=1

Selected model



Construct all Models, Select Best

for each configuration f

dPerf , mode] 0= Hold-Out2(D,f)
end for

] = argmaxPerf
return ePerf, mode]o



Construct all Models, Select Best

for each configuration f

dPerf , mode] 0= Hold-Out2(D,f)
end for

] = argmaxPerf
return ePerf, mode]o

It peeks in the test
cases to select the

final model:
of Golden Rule




Extreme Distributions: 1 Model

B -

Alg Parameter LOSS - | True accluracy D.B:’il, Test sizeIED, 1000 tllatasets |

K-NN K=1 160 F

140

Freguency
= L] = L] (]
T T T T T

[0
[ ]
T

0
0.65 0.7 075 na D.as 0o 0.95 1
Accuracy Estimate, Sample Mean = 0.845200, std =0.050226

Assume: Equal true accuracies 85%
Mean = 0.85

Std :sirt‘Ni" i i" / N = 0.0505



Extreme Distributions: 8 Models

B -

A|g Param eter LOSS 200 True accuracy 0.85, Test size 50, 1000 datasets, Best of B

KNN  K=1
K=2
K=5 -
DT  MaxPChance0.01 £
MaxPChance0.05 100 [
MaxPChance0.1 o
SB 1=0 L
=1 " Acouracy Estimate. Sample Moan = 0.916700, s ~0.026195

Assume: Equal true accuracies 85%Mean,
Std follow an Extrem®Bistribution
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Performance Estimation Bias

Let m, & , | Ioe the sample performances of each configuration
Let m € , m, be the true performances of each configuration

For unbiased estimation we have m=E(m,) € ,m =E(m,)

o O O O

We return as our estimate the best sample performance max(m, € ,
mp)

o On average we return  E(max(m, & , ,)in
o True best performance is max(m € ,m) = max(E(m,) , Eém,))

o Our estimate on average  E(max(m, € , )m) ma&E(m,) , E6fm,))true
best, by Jensends i1 nequality



Test set prediction matrix

Folds C G X G,
1 09 | 0.8 | X 0.7
2 08 | 0.7 | X 0.6
X X X X X
K X X X X
{ Mean | 09 | 08| X | 07 !

N
N
Y]

%




Which model out
of all trained

should we use?

Test set prediction matrix e
C,

Folds C G X

1 | 09|08 x| 07

2 o8 |07 x| o6

x | x | x| x] x

kK | x | x| x| x
-------- 109 i08iX ! 07 |




Which model out
of all trained Return model trained
should we use? on all data using best
configuration. Should

be best on average

Test set prediction matrix

Folds C G X G,

1 | o9 o8| x| o7

2 | o8 |o07| x| o6

x | x [ x| x| x

kK | x [ x| x] x
-------- 109{08! X | 07 |




Which model out
of all trained Return model trained
should we use? on all data using best
configuration. Should

be best on average

Test set prediction matrix

Folds C G X G,

1 09 | 08| X 0.7

2 0.8 0.7 ] X 0.6 .

x T x 1 x T x T x s Its expected

K | x | x | x| x performance the
"""" 09 {08! X | 07 | CrossValidated

i Mean ﬂi 09 i 08 i ol
one?




Which model out
of all trained Return model trained
should we use? on all data using best
configuration. Should

be best on average

Test set prediction matrix

Folds C G X G,
1 09 | 08| X 0.7
2 0.8 0.7 | X 0.6 .
<~ T x T x I x| x Is its expected
K | x | X | x| X performance the No! The Cros¥alidated
| Mean | 09 {081 X | 07 Crossvalidated accuracy of the best
one? configuration is

optimistic!
(multiple induction
problem, Jensen 1992




Conservatism vs. Optimism

o Each CV single -configuration estimates are  conservative
they are based on training with fewer samples than the final

model
o CV multiple -configuration estimates are  optimistic:

o Winner depends on:
0 Sample size : smaller sample size optimism wins

o Number of configurations tried : more configurations, optimism
wins

o“Correlati on’” othe no®@ mdepegdent, thé largen
the optimism

o Distribution of true performances of configurations . the less
variant, the more optimism



Choose Configuration AND Estimate
Performance

o How?
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Choose Model AND Estimate
Performance

Train Estimate

o Train: used to train model
0 Tune: used to choose best configuration
0 Estimate: used to estimate performance

o Called Train -Validation -Test in the literature



Simple Train-Tune-Estimate

HoldOut

Train

Tune Estimate

STTE-Hold-Out (Data D, learning method, vectors ohpsa)

Randomly partition row indexes ainl, Tunel, Estl
For all hpa in a//Try all configurations
Create a new configuratidy= f(Q a)
M, = f; ( D (Trainl)), Est = I(y(Tune)), M,(X(Tune))
End For
I* = argmaxEst // Best configuration based on Tune set

Returned Model: M.

Returned Estimation: I(y(Estl), M. (X(Estl))

f=f(@Qa): fis called a closure ; makes
programming really easy

Trains C models, C the number of configurations
Correctly follows the Golden Rule, correct estimation
Does not train on all data, as it should

Directly estimates the loss of a model, not of the
learning function

Pros: computationally efficient, simple
Cons: loses data to both Tune and Estimate

Use when sample size is really large



Consider Tuning part of learning

Learning Methodf

C\f,, D
Data D =X,}} : \ Retrain on all
—_— C\(f,, D) —|  SeleciBest * data using best > Model M

/ configuration
C\(f,, D




Cross-Validation with Tuning

Algorithm 2 CVT(f, D = {F,, ..., Fx}, ®): Cross-Validation With Tuning

Input: Learning method f, Data matrix D = {{x;, }'J,-}}J‘Ll partitioned into about equally-sized folds F;, set

of configurations &
Output: Model M, Performance estimation Ly 7. out-of-sample predictions 7 on all folds for all configu-
rations

I:fori =1toC =|®@|do

2: [/l Create a closure of f (a new function) by grounding the configuration #;

3:  fi < Closure(f(-, 6;))

4: (M;.L;.IT;) < CV(f;. D)

5: end for

6: i* < argmin; L;

7: // Final Model trained by f on all available data using the best configuration

8 M <« f(D,0;+)

9: // Performance estimation: may be optimistic and should not be reported in general

10: Lcyr <« Lj»
I1: // Out-of-sample predictions are used by bias-correction methods

12: Collect all out-of-sample predictions of all configurations in one matrix IT < [ITy --- 1]
13: Return (M. Lcyr, IT)




Nested Cross -Validation

0 Cross-Validate a learning method that returns a
single model, but performs tuning internally

o0 Cross-Validate CVT !

Algorithm 3NCV(f, D ={Fy, ..., Fg}, ®): Nested Cross-Validation

?":1 partitioned into about equally-sized folds F;, set

Input: Learning method f, Data matrix D = {{x;, v;)}

of configurations &

Output: Model M, Performance estimation L ycy . out-of-sample predictions [T on all folds for all configu-

rations

I: /I Create closure by grounding the f and the @ input parameters of CVT

2: [/« CVT(f,-,O)

3: // Notice: final Model is trained by f” on all available data; final estimate is provided by basic CV (no
tuning) since [’ returns a single model each time

4: (M, Lycy.IT) < CV(f', D)

5: Return (M, Lycvy)




NCV Trace: Model Production

o Configurations a, b, Folds 1, 2, 3
1,2 a M, 3 0.7

1,3 a M, 2 0.8
2,3 a M 1 0.6
Mean,= 0.7
1,2 b M, 3 0.6
1,3 b Ms 2 0.7
2,3 b Me 1 0.5
Mean, = 0.6
Select a
1,23 a M; N/A

Return model M



NCV Trace: Estimation

o Fold 3 is held -out as an Estimation set

with Cont ADpl on
1 a Mg 2 0.7

2 a Mg 1 0.8
Mean, = 0.75
1 b Mo 2 0.6
b M, 1 0.7
Mean, = 0.65
Select a

Lz a Mz 3 09



NCV Trace: Estimation

o Fold 2 is held -out as an Estimation set

With Conf Apply on
1 a M3 3 0.6

3 a My, 1 0.7
Mean, = 0.65
1 b M 3 0.7
b Mg 1 0.8
Mean, = 0.75
Selectb
he B Bl 2 0.7



NCV Trace: Estimation

o Fold 1 is held -out as an Estimation set

With Conf Apply on
2 a Mg 3 0.8

3 a Mg 2 0.6
Mean, = 0.7
2 b M, 3 0.6
b M, 2 0.6
Mean,= 0.6
Select a
2,3 a M., 1 0.8

Final Estimatemean of 0.9 + 0.7 + 0.88



How many models trained?

C: number of configurations

K: number of folds

o To produce the final model  CVT is called with K folds
o C configurations | K folds for estimating best configuration
0 +1to train on the full dataset
o =CIK+1

o To estimate its performance
0 Run CVT with K-1 folds, K times
o =(CI (K-1)+1)I K

o Total number of models trained= CI K2+ K+1

o0 Expensive



Nested -Cross Validation

o Fold loop within CVT: inner CV loop
o Fold loop within CV: outer CV loop

o0 The standard protocol for small-sample, omics data

o Want more accurate estimation, run Repeated -CV
Instead of CV

o Want even more accurate estimation, run Repeated -
CVT instead of CVT

o Computationally expensive O(K  2) models per
configuration; Can we do better ?



Sel

Let OsSs Focus o0n
Learning Methodf
C\(f,, D
Data D =X,}} C\\ifl Dz \ - dRetrair_l onball
) . —> electBest > ata using est
: / configuration
C\f,, D

> Model M

o Our selection strategy creates the estimation problem

€



Let O0S

FOCUS

O I

Sel

Data D

™\

Learning Methodf

Test set prediction matri¥

CMfy D) [~ Sample  f; f, X. f
C\(fz, D) |, 1 yes no X no
2 no yes | X no
X X X X X
C\f,D 224 no | yes| X | yes

»

SeleciBest

|

Retrain on all
data using best
configuration

P; = prediction of model trained with
configurationj on samplg, wheni was

in the test set

/

Choose the column

with the lowest loss

N\

Output best
configuration N

Model M

€



Performance estimation bias
correction

Test set prediction matrix

Sample f; f, X. f

n

1 yes | no X no

2 no yes | X no

X X X X X
224 no yes | X | yes

No need to train new models, computationally efficient

Can safely replace nested Cross -Validation; Next standard ?



Performance estimation bias
correction

'4
Test set prediction matrix 'Q‘

Sample f; f, X. f

n

1 yes | no X no

2 no yes | X no

X X X X X
224 no yes | X | yes

No need to train new models, computationally efficient

Can safely replace nested Cross -Validation; Next standard ?



Performance estimation bias
correction

0 Solution:

S ' 4
-,Q: Estimate the performance of the  configuration

Test set prediction matrix selection procedure

Sample f, f, X. f 0 Use bootstrapping or CV on the test prediction

1 yes no X no matl’lxl

2 o | yes| X | no o  Select best configuration on a subset of the
X AT BEAT NEAT matrix
224 no yes| X | yes

o Estimate performance of the selected
configuration on the held -out set

No need to train new models, computationally efficient

Can safely replace nested Cross -Validation; Next standard ?



Performance estimation bias
correction

Test set prediction matrix

Sample f f, X f

n

1 yes | no | X no

2 no yes | X no

X X X X X
224 no yes| X | yes

BootstrapBiasCorrectedCV X Tsamardinosn. Greasidok D ® . 2 ND 2 dzR | { A & Z-of-GampleRiedidtiolls fodLIA Y
Efficient and Accurate Crogsl A R Matching {/eérBin@018



Performance estimation bias
correction

1 yes [ no X no
Test set prediction matrix = 1 yes| no | X | no
Sample f, f, X. f X X [ X x| X
224 no yes [ X yes
1 yes no X no

2 no yes | X no ==
X X X X X Sample f, f, X. f,
224 no yes | X | yes 2 no | yes| X | yes
= 3 yes | no | X no
X X X X X
220 no | yes| X [ yes

BootstrapBiasCorrectedCV - Tsamardinosn. Greasidok D@ . 2 ND 2 dzR | 1 A & Z-of-GampleRiedidtioils fodLJA Y
Efficient and Accurate Croasl f A R Maching {/eérBin@018



Performance estimation bias
correction

Select best Configuration, i.e, C

Sample  f; f, X. f

n

1 yes | no X no
Test set prediction matrix = 1 yes| no | X | no
X X X X X
Sample  f; f, X f,
224 no yes [ X yes
1 yes no X no —_—
2 no yes | X no ==
X X X X X Sample f, f, X. f,
224 no yes | X | yes 2 no | yes| X | yes
= 3 yes | no | X no
X X X X X
220 no [ yes| X | yes

BootstrapBiasCorrectedCV - Tsamardinosn. Greasidok D@ . 2 ND 2 dzR | 1 A & Z-of-GampleRiedidtioils fodLJA Y
Efficient and Accurate Croasl f A R Maching {/eérBin@018



Performance estimation bias
correction

Select best Configuration, i.e, C

Sample  f; f, X. f

n

1 yes | no X no
Test set prediction matrix = 1 yes| no | X | no
X X X X X

Sample  f; f, X f,
224 no yes [ X yes

1 yes no X no

2 no yes | X no m=- Measure Performance,fC

X X X X X Sample f, f, X. f,
224 no yes | X | yes 2 no | yes| X | yes
= 3 yes | no | X no
X X X X X
220 no | yes| X | yes

BootstrapBiasCorrectedCV - Tsamardinosn. Greasidok D@ . 2 ND 2 dzR | 1 A & Z-of-GampleRiedidtioils fodLJA Y
Efficient and Accurate Croasl f A R Maching {/eérBin@018



Performance estimation bias
correction

Select best Configuration, i.e, C

Sample  f; f, X. f

n

1 yes | no X no
Test set prediction matrix = 1 yes| no | X | no
X X X X X

Sample  f; f, X f,
224 no yes [ X yes

1 yes no X no

2 no yes | X no m=- Measure Performance,fC

X X X X X Sample f, f, X. f,
224 no yes | X | yes 2 no | yes| X | yes
= 3 yes | no | X no
X X X X X
220 no | yes| X | yes

B=1
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Performance estimation bias
correction

X X
Test set prediction matrix = 1 |yes|no| x [ no|X 2 no | yes | x | yes
X X X X X X X X X X
Sample f f, X f,
224 no yes [ X yes 210 no yes | X yes
1 yes no X no
2 no yes | X no Measure Performance,f G Measure Performance,®f G,
X X X | X | X Sample f, f, X. f, Sample f, f, X. f,
224 no yes| X | yes 2 no | yes| X | yes 1 yes | no | X no
= 3 yes | no | X no | X 3 yes | no | X no
X X X X X X X X X X
220 no | yes | X yes 220 no | yes| X yes
B=1 B=1000

Select best Configuration, i.e, C

no

ple f; f,
1 yes | no

Select best Configuration, i.e, C

yes

ple f; f,
2 no yes
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Performance estimation bias
correction

X X
Test set prediction matrix = 1 |yes|no| x [ no|X 2 no | yes | x | yes
X X X X X X X X X X
Sample f f, X f,
224 no yes [ X yes 210 no yes | X yes
1 yes no X no
2 no yes | X no Measure Performance,f G Measure Performance,®f G,
X X X | X | X Sample f, f, X. f, Sample f, f, X. f,
224 no yes| X | yes 2 no | yes| X | yes 1 yes | no | X no
= 3 yes | no | X no | X 3 yes | no | X no
X X X X X X X X X X
220 no | yes | X yes 220 no | yes| X yes
B=1 B=1000

Select best Configuration, i.e, C

no

ple f; f,
1 yes | no

Select best Configuration, i.e, C

yes

ple f; f,
2 no yes
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Performance estimation bias
correction

Select best Configuration, i.e, C

no

ple f; f,
1 yes | no

Select best Configuration, i.e, C

yes

ple f; f,
2 no yes

Same procedure use
to provide confidence

o | X « X intervals!
Test set prediction matrix = 1 yes| no | X | no 2 no | yes| X | yes
X X X X X X X X X X
Sample f f, X f,
224 no yes [ X yes 210 no yes | X yes
1 yes no X no
2 no yes | X no Measure Performance,f G Measure Performance,®f G,
X X X X X Sample f, f, X. f, Sample f, f, X. f,
224 no yes| X | yes 2 no | yes| X | yes 1 yes | no | X no
=-»> 3 yes [ no | x | no | X 3 yes| no | X | no Performance
X x | x [ x| x X X | x | x| x measured on
220 no | yes | X | yes 220 no | yes| X | yes new samples
B=1 B=1000 each time

J. Tsamardinogn. Greasido D® . 2 Nb 2 dzR| | A & >-of-@ampl@Rredictidlds fodLIA y
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Generation of Cls
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Generation of Cls

Average, bootstrap
corrected AUC estimate
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Algorithm 5 BBC-CV(f, D = {Fi,..., Fg}, ®): Cross-Validation with Tuning, Bias
removal using the BBC method

Input: Learning method f, Data matrix D = {({xj,y i}}j:;l partitioned into approximately equally-sized

folds F;, set of configurations &
Output: Model M, Performance estimation L g gc. 95% confidence interval [Ib, ub]

1: // Notice: the final Model is the same as in CVT

2: (M, Lcyr, 1) < CVT(f, D, ®)

: for b =1to B do

nb « sample with replacement N rows of I

o\l «— g1 \ b get samples in /1 and not in b

/I Apply the configuration selection method on the bootstrapped out-of-sample predictions
Jj <« ces(IT?, yb)

// Estimate the error of the selected configuration on predictions not selected by this bootstrap
Ly < L\, TG, V)

10: end for

11: Lggc = % >p—q Lb

12: // Compute 95% confidence interval; Ly denotes the k-th value of Lj’s in ascending order

13: [lb, ub] = [L(0.025.B)> L(0.975.B)]
14: Return (M, Lppc, [lb, ub))

WA W




Cross Validation bias correction

03 Cross Validation |- 03 Tibshiraniand Tibshirani |-
0258\ With Tuning— CVT |- 025f Protocol-TT
02y 2 5 02 - :
2 oeh 2 Averageestimatedbias (over 20 sub-datasets
—omaivine | £l 2 for eachoriginal dataset)of the CVT,TT,NCV
Txphippine) £ [t and BBCCVestimatesof performance
- = dexter @© @©
—o&— madeline o
— < —gisette o
—-¥-— christine % 0 % = 100 500 L. ] )
—e—madelon sample size sample size o0 CVTis optimisticallybiasedfor samplesize
B %_ﬂgiine 03 - Nested Cross [ s Bootstrap Bias Corrected N >K100.
oy Validation- NCV | 1 °zrl CrossValidation¢ BBCCV | 1 o NCV and BBGC\/’ both have low bias
2 3 o] . thoughresultsvarywith dataset
. 20 esoample Sizsg 100 500 20 40 Gsoample SiZB: 100 500



Multiple Repeats with Different Fold
Partitions

BBC-CVX, N = 20, 95% Cls BBC-CVX, N =100, 95% Cls
T T T T T T T T 9 T T T T T T T T

o Different
splitsto folds, give

s (AUC)

@™~ = W
I‘-HI'

6“0
L . 807 L\‘*Q Oo
different estimates Sostow L ot 5.
§U4;\& ] ] ﬁn'
0 Repeat the cross >l 5
validation I
procedure with A A R ®

# repeats # repeats

different splits

o Reduces confidence
intervals

0 Improves selection
of best configuration



NCV vs Repeated BBC

o0 Is It better to use NCV with 10
folds or BBC with 10 Repeats?

0 same number of trained models

o BBC-CV 10 returns on average

better models for small sample
sizes

relative average true performance (AUC)

0.92 ! ! L
20 40 60 80 100 500

sample size

—&—sylvine —¥— philippine — & —dexter —&— madeline

— < —gisette —-*-—christine —&— madelon —¥—gina —#-—jasmine



BBC-CV

o0 Pros. Generally applicable to any type of data, any
type of outcome, any performance metric

0 Pros: Reduces complexity from O(K 2) models per
configuration to O(K)

o0 Pros: Generation of Confidence Intervals comes for free
0 Pros: better than NCV for the same budget

0 Cons: Requires a predetermined set of configurations;
does not work with dynamic search strategies
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BBCD: BBC with Dropping

o Do we really need to train models for all folds for all
configurations?
oCanot we detect the |
just a few folds?
o And stop training further models?

nNferi1 or

C (




BBCD: BBC with Dropping

Test set prediction matrix

T £ox - A After first CV iteration:

Samples of| 1 yes no | X | no Training data all folds but F;
fold K 2 no yes X no Yes Test data F

3 e | P 2 1T A Models produced with

4 (empty) | (empty) | X | (empty) No : : : :
Samples of — Vo configuration f; seem inferior
fold F, v | A Perform astatistical test to

determine inferiority

Samples of A If true, drop f, from subsequent
fold ks 224 ves CV iterations




BBCD

0 Selects equally good

BBCD-CV/CVT, sample size = 500
1 1 T T T T

models when samples ol .
size > 500 9 |
: 81 D
0 Speed up of 5 -6 times for _ ,| - T T
10-fold CV g ol | ~ L | :
> st : + | : :
o Total speed up vs. 10 - N I 1
fold NCV about 40 -50 sHo | £ | T
2 - —— - T % Jl_ @
§ ¢ <§§ QQ\& @“”8&\(\@ @gé& e}‘(\é\(\@ @‘bbe}oo Cf@ \&&Q@
datasets



Practical advise for Tune -n-Estimate

0 For samples sizes < 250 per class use BBC with multiple
repeats

0 For sample 250 < sizes <2000 use BBCD

o For larger sample sizes use hold -out




User Preferences




Preference Dimensions




Preference Dimensions

o Different analyses, different needs




Preference Dimensions

o Different analyses, different needs

0 Not everybody cares only for predictive performance!




Preference Dimensions

o Different analyses, different needs
0 Not everybody cares only for predictive performance!

o What are the different criteria for a successful analysis?




User Preferences Trade -Offs

o Predictive performance
o Important for models to put in operational use
0 E.g., models for translational medicine

0 Use maximum number of folds, several repeats,
more algorithms, more hyper -parameter values



User Preferences Trade -Offs

0 Knowledge Discovery (in the form of Feature

Selection)
o Important when trying to get intuition into the mechanisms
(causality) of the data generating mechanism

o Or, when trying to reduce cost of measuring the features (E.g.,
models in molecular biology)

o Try configurations with feature selection only

o Try feature selection hyper -parameters that force the selection
of few features



User Preferences Trade -Offs

o Interpretabllity

o Important when gaining intuition how the
features determine the outcome (E.q.,
medicine)

0 Enforce both feature selection and humanly -
Interpretable models

0 Generalized linear models
o Decision Trees



User Preferences Trade -Offs

0 Speed of analysis

o Important for initial estimation of the
Information -value

0 Use fewer algorithms, fewer hyper -parameter
values, less expensive algorithms



User Preferences Trade -Offs

0 Speed of Model Execution

o Important for real -time predictions (E.g., text
classification models on a popular web -server)

0 Enforce only fast -executing models, e.qg,.
generalized linear models, decision trees



Trade -off estimation

o When restricting search to

0 only interpretable models
o only with feature selection
o only with fast -executing models

o Compare against the unrestricted search results to
estimate the performance loss
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Summary

o Tuning is very important for predictive performance

o0 Tuning (trying multiple configurations)leads to overestimations ; it
requires special estimation protocols

o Beware of * c¢choos idetigions imgenetalelead too f
overestimation!

o0 NCV is the current standard : it cross-validates a learner that CVs
configurations and chooses the best

BBC bootstraps the configuration strategy
BBCD drops early inferior configurations

BBC and BBCD a faster, better proposed alternative

o O O O

Different analysis preferences require adjusting the pipeline
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Checkpoint: You should know

V The concepts of hyper -parameters and configurations
V The Golden Rule of estimation
V Common pitfalls of analysis:
V Not CVing all steps of the analysis
V Reporting the best of CVed performances
V Grid Search in the space of hyper -parameters
V NCV and BBC

V Should be enough to construct a basic, but quite
general and correct automated pipeline
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