Cite as: Ioannis Tsamardinos, Vincenzo Lagani, Automated Machine Learning and Knowledge Discovery, ECCB 2018 Tutorial

#### Automated Machine Learning and Knowledge Discovery

IOANNIS TSAMARDINOS

**PROFESSOR, CSD, UNIVERSITY OF CRETE** 

GNOSIS DATA ANALYSIS, CO-FOUNDER

VINCENZO LAGANI

ILIA STATE UNIVERSITY

GNOSIS DATA ANALYSIS, CO-FOUNDER

#### Outline

#### o Part I (45')

- Introduction to the problem and the tutorial
- Estimation of performance (single configuration)

#### • Part II (45')

- Estimation of performance (multiple configurations)
- Incorporating User Preferences

#### • Part III (45')

- Feature Selection and Knowledge Discovery
- Hyper-parameter search strategies

#### • Part IV (45')

- Post-analysis interpretation and visualizations
- Al-assisted Auto-ML (algorithm selection, pipeline synthesis, meta-learning, feature learning)
- Putting all together The Just Add Data Bio platform
- o Tools for Auto-ML

## Tune and Estimate

## Choices, choices, choices

- Multiple algorithms available and applicable for all steps of the analysis (feature selection, classification, etc.)
- o Each algorithm has a set of "tuning knobs"
- Optimize choice of combinations of algorithms and their "tuning knobs"

#### Hyper-Parameters vs. Parameters

- A **parameter** of a <u>model</u> (e.g., linear regression) is a quantity directly estimated from the data
  - In linear regression  $y = w_1 x_1 + ... + w_n x_n + b$ , w's and b are parameters, estimated from the data
- A **hyper-parameter** of an <u>algorithm</u> is a quantity not estimated by the data but set by the user
  - Determines the sensitivity of an algorithm to detecting patterns
  - A hyper-parameter may, of course, be estimated indirectly by CV (then it becomes a parameter in the complete procedure)

#### Examples of Hyper-Parameters

- K-Nearest Neighbors: K, distance function
- **Decision Trees**: MaxPChance (level of pruning)
- Support Vector Machines: Cost C, kernel K (each one has its own hyper-parameters)
- Univariate Feature Selection: p-value threshold
- Lasso: regularization parameter lambda
- Gaussian processes can have dozens of hyperparameters [C. E. Rasmussen & C. K. I. Williams. "Gaussian Processes for Machine Learning", the MIT Press, 2006]

- Which algorithm to choose can also be seen as a hyper-parameter!
- Which data representation to use is a hyper-parameter

- Which algorithm to choose can also be seen as a hyper-parameter!
- Which data representation to use is a hyper-parameter

- Which algorithm to choose can also be seen as a hyper-parameter!
- Which data representation to use is a hyper-parameter

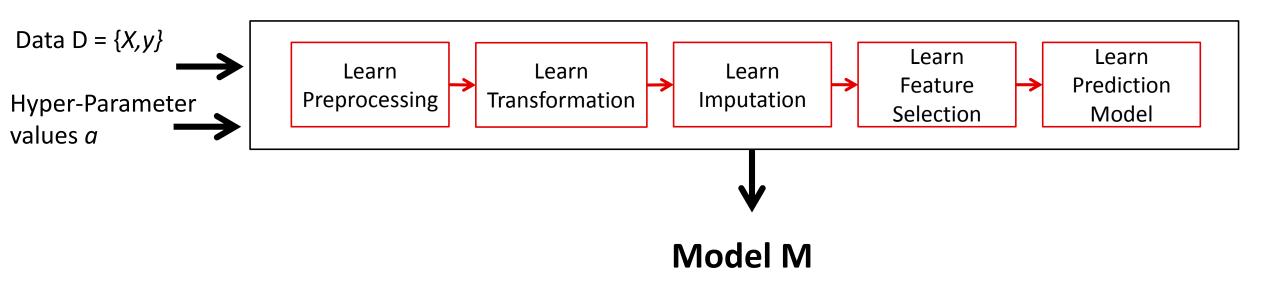
- Which algorithm to choose can also be seen as a hyper-parameter!
- Which data representation to use is a hyper-parameter
- Point: all our choices can be represented with a vector <u>a</u> of hyper-parameter values!

#### More algorithms vs. better tuning

#### • Personal Experience:

- **Tuning of flexible**, **"good" algorithms** is more important than trying a plethora of algorithms with default values
- Personal choices: SVMs, Random Forests, Gradient Boosting Trees (can represent all functions), ensemble methods
- Feature construction, data representation, data transformations, more important than including more learning algorithms

#### Hyper-Parameterized Learning Method *f*

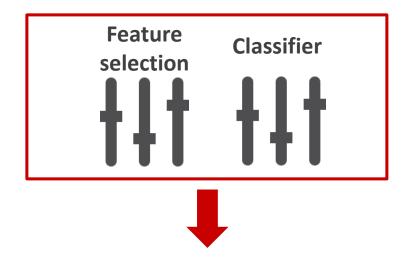


#### Hyper-Parameters and Configurations

• **Configuration**: an instantiation of a learning method *f* with specific hyper-parameter values.

• A configuration coincides with a nonhyperparameterized learning method.

• A configuration completely defines which computations to perform all the way from data to model.



| Configurati | ion | Hyper-parameter 1 | Hyper-parameter 2 | <br>Hyper-parameter m |
|-------------|-----|-------------------|-------------------|-----------------------|
| 1           |     | SES               | 0.05              | <br>SVM               |
| 2           |     | Lasso             | 1                 | <br>Random Forests    |
|             |     |                   |                   | <br>                  |
| n           |     |                   |                   | <br>                  |

#### Tuning vs Model Selection

#### • Model selection (statistics):

- o produce several models, on all the data, select the "best"
- Typically, the selection is manual based on some criteria (fitting + simplicity, distribution of residuals, etc.)
- o **Tuning** [Tsamardinos et al. Machine Learning, 2018]
  - Tuning = **configuration selection**
  - Only one model is produced on all the data (no model selection)
  - The model is produced by the "best" configuration
  - "Best" is found by tuning the hyper-parameter

- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try

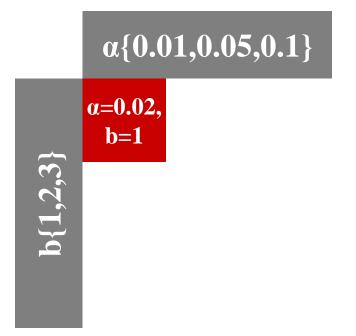
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try

 $\alpha$ {0.01,0.05,0.1}

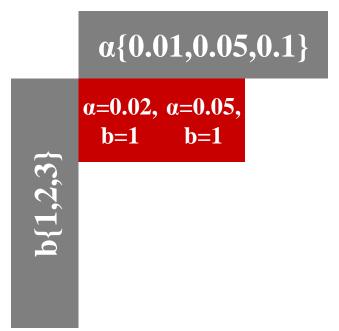
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



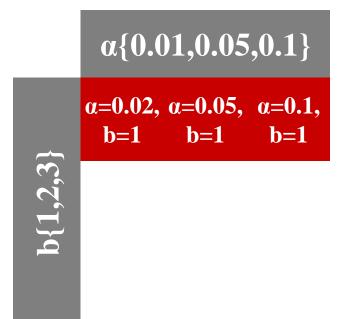
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



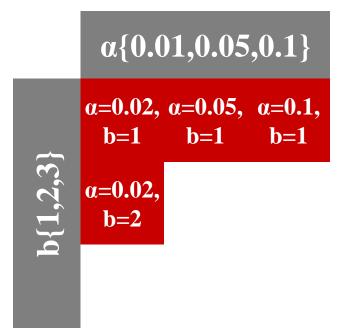
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



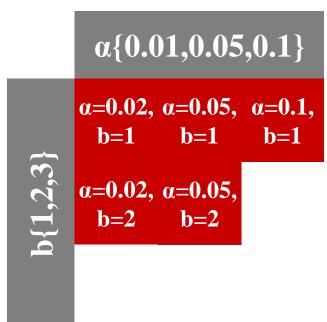
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



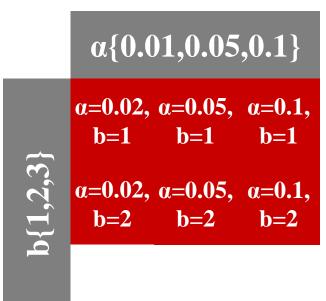
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



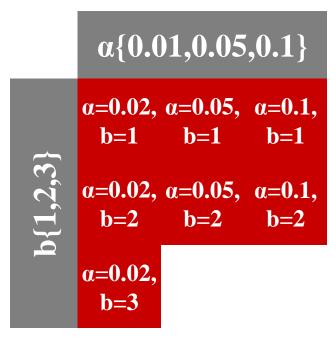
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



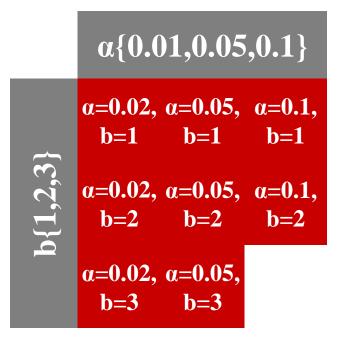
- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try



- A priori decide which algorithms to try in each step
- A priori decide the values to try for each hyper-parameter
- o Try all combinations (full-factorial)
- o Called Grid Search
  - o Try values {0.01, 0.05, 0.1} for hp a
  - o Try values {1, 2, 3} for hp b
- Static hyper-parameter search strategies predetermine the configurations to try

## Example of Tune-n-Estimate (the wrong way)

- Construct all models from each configuration  $f_i$ , i=1, ..., 100
- o Select Best
- o Report its estimated performance

```
for each configuration f<sub>i</sub>
```

```
\langle \operatorname{Perf}_i, \operatorname{model}_i \rangle = \operatorname{Hold-Out}(D, f_i)
```

#### end for

```
j = argmax Perf_i
return (Perf<sub>i</sub>, model<sub>i</sub>)
```

|           | Test            |                    |
|-----------|-----------------|--------------------|
| Algorithm | Parameter       | Performance (Loss) |
| K-NN      | K=1             | 0.81               |
|           | K=2             | 0.84               |
|           | K=5             | 0.88               |
| DT        | MaxPChance=0.01 | 0.83               |
|           | MaxPChance=0.05 | 0.9                |
|           | MaxPChance=0.1  | 0.81               |
| SB        | 1 = 0           | 0.75               |
|           | l=1             | 0.83               |

|           | Test            |                    |
|-----------|-----------------|--------------------|
| Algorithm | Parameter       | Performance (Loss) |
| K-NN      | K=1             | 0.81               |
|           | K=2             | 0.84               |
|           | K=5             | 0.88               |
| DT        | MaxPChance=0.01 | 0.83               |
|           | MaxPChance=0.05 | 0.9                |
|           | MaxPChance=0.1  | 0.81               |
| SB        | 1 = 0           | 0.75               |
|           | l=1             | 0.83               |

|           | Train           |        | Test         |        |
|-----------|-----------------|--------|--------------|--------|
| Algorithm | Parameter       | Perfor | mance (Loss) |        |
| K-NN      | K=1             |        | 0.81         |        |
|           | K=2             |        | 0.84         |        |
|           | K=5             |        | 0.88         |        |
| DT        | MaxPChance=0.01 |        | 0.83         |        |
|           | MaxPChance=0.05 |        | 0.9          |        |
|           | MaxPChance=0.1  |        | 0.81         |        |
| SB        | 1 = 0           |        | 0.75         |        |
|           | l=1             |        | 0.83         |        |
|           |                 |        | Selecte      | d mode |

|           | Train           | Test              |                          |
|-----------|-----------------|-------------------|--------------------------|
| Algorithm | Parameter       | Performance (Loss |                          |
| K-NN      | K=1             | 0.81              | <b>Returned Estimate</b> |
|           | K=2             | 0.84              | (WRONG WAY)              |
|           | K=5             | 0.88              |                          |
| DT        | MaxPChance=0.01 | 0.83              |                          |
|           | MaxPChance=0.05 | 0.9               |                          |
|           | MaxPChance=0.1  | 0.81              |                          |
| SB        | 1 = 0           | 0.75              |                          |
|           | l=1             | 0.83              |                          |
|           |                 | Select            | ed model                 |

for each configuration  $f_i$ 

 $\langle \operatorname{Perf}_i, \operatorname{model}_i \rangle = \operatorname{Hold-Out2}(D, f_i)$ 

end for

 $j = argmax Perf_i$ return (Perf<sub>i</sub>, model<sub>i</sub>)

for each configuration  $f_i$ 

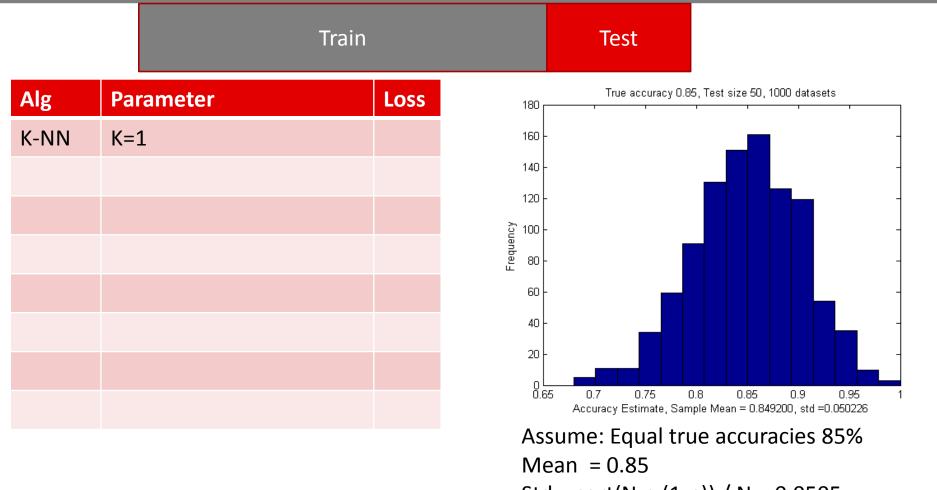
 $\langle \text{Perf}_i, \text{model}_i \rangle = \text{Hold-Out2}(D, f_i)$ 

end for

 $j = argmax Perf_i$  **return** (Perf<sub>i</sub>, model<sub>i</sub>)

It peeks in the test cases to select the final model: violation of Golden Rule

#### Extreme Distributions: 1 Model



 $Std = sqrt(N \cdot p \cdot (1 - p)) / N = 0.0505$ 

#### Extreme Distributions: 8 Models

|      | Ti              | rain | Test                                                                                                          |
|------|-----------------|------|---------------------------------------------------------------------------------------------------------------|
| Alg  | Parameter       | Loss | True accuracy 0.85, Test size 50, 1000 datasets, Best of 8                                                    |
| K-NN | K=1             |      | 250 -                                                                                                         |
|      | K=2             |      |                                                                                                               |
|      | K=5             |      | 200 -<br>2                                                                                                    |
| DT   | MaxPChance=0.01 |      | AS 150                                                                                                        |
|      | MaxPChance=0.05 |      | 100 -                                                                                                         |
|      | MaxPChance=0.1  |      | 50 -                                                                                                          |
| SB   | l = 0           |      |                                                                                                               |
|      | l=1             |      | 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1<br>Accuracy Estimate, Sample Mean = 0.916700, std =0.026195 |

Assume: Equal true accuracies 85%Mean, Std follow an Extreme Distribution

 $\circ$  Let  $\mathbf{m}_1, \ldots, \mathbf{m}_n$  be the sample performances of each configuration

- $\circ$  Let  $\mathbf{m}_1, \ldots, \mathbf{m}_n$  be the sample performances of each configuration
- o Let  $\mu_1, ..., \mu_n$  be the true performances of each configuration

- $\circ$  Let  $\mathbf{m}_1, \dots, \mathbf{m}_n$  be the sample performances of each configuration
- $_{\rm O}$  Let  $\mu_1,...,\mu_n$  be the true performances of each configuration
- For unbiased estimation we have  $\mu_1 = \mathbf{E}(\mathbf{m}_1), \dots, \mu_n = \mathbf{E}(\mathbf{m}_n)$

- $\circ$  Let  $\mathbf{m}_1, \dots, \mathbf{m}_n$  be the sample performances of each configuration
- $_{\rm O}$  Let  $\mu_1,...,\mu_n$  be the true performances of each configuration
- For unbiased estimation we have  $\mu_1 = \mathbf{E}(\mathbf{m}_1), ..., \mu_n = \mathbf{E}(\mathbf{m}_n)$
- $\circ$  We return as our estimate the best sample performance  $max(m_{1,}\,...,\,m_{n})$

- $\circ$  Let  $\mathbf{m}_1, \dots, \mathbf{m}_n$  be the sample performances of each configuration
- $_{\rm O}$  Let  $\mu_1,...,\mu_n$  be the true performances of each configuration
- For unbiased estimation we have  $\mu_1 = \mathbf{E}(\mathbf{m}_1), ..., \mu_n = \mathbf{E}(\mathbf{m}_n)$
- $\circ~$  We return as our estimate the best sample performance  $max(m_{1,}\,...,\,m_{n})$
- On average we return  $E(max(m_{1,}...,m_{n}))$

- $\circ$  Let  $\mathbf{m}_1, \dots, \mathbf{m}_n$  be the sample performances of each configuration
- $_{\rm O}$  Let  $\mu_1,...,\mu_n$  be the true performances of each configuration
- For unbiased estimation we have  $\mu_1 = \mathbf{E}(\mathbf{m}_1), ..., \mu_n = \mathbf{E}(\mathbf{m}_n)$
- $\circ$  We return as our estimate the best sample performance  $max(m_{1,}\,...,\,m_{n})$
- On average we return  $E(max(m_{1,}...,m_{n}))$
- True best performance is  $max(\mu_1, ..., \mu_n) = max(E(m_1), ..., E(m_n))$

- $\circ$  Let  $\mathbf{m}_1, \dots, \mathbf{m}_n$  be the sample performances of each configuration
- $_{\rm O}$  Let  $\mu_1,...,\mu_n$  be the true performances of each configuration
- For unbiased estimation we have  $\mu_1 = \mathbf{E}(\mathbf{m}_1), ..., \mu_n = \mathbf{E}(\mathbf{m}_n)$
- $\circ$  We return as our estimate the best sample performance  $max(m_{1,}\,...,\,m_{n})$
- On average we return  $E(max(m_{1,}...,m_{n}))$
- True best performance is  $max(\mu_1, ..., \mu_n) = max(E(m_1), ..., E(m_n))$
- o Our estimate on average  $E(max(m_{1,}...,m_{n})) ≥ max(E(m_{1}),...,E(m_{n}))$  true best, by Jensen's inequality

| Folds | C <sub>1</sub> | C <sub>2</sub> | •••• | C <sub>n</sub> |
|-------|----------------|----------------|------|----------------|
| 1     | 0.9            | 0.8            |      | 0.7            |
| 2     | 0.8            | 0.7            |      | 0.6            |
|       |                |                |      |                |
| К     |                |                |      |                |
| Mean  | 0.9            | 0.8            |      | 0.7            |





| Folds | C <sub>1</sub> | C <sub>2</sub> | •••• | C <sub>n</sub> |
|-------|----------------|----------------|------|----------------|
| 1     | 0.9            | 0.8            |      | 0.7            |
| 2     | 0.8            | 0.7            |      | 0.6            |
|       |                |                |      |                |
| К     |                |                |      |                |
| Mean  | 0.9            | 0.8            |      | 0.7            |

Which model out of all trained should we use?





| Folds | C <sub>1</sub> | C <sub>2</sub> | •••• | C <sub>n</sub> |
|-------|----------------|----------------|------|----------------|
| 1     | 0.9            | 0.8            |      | 0.7            |
| 2     | 0.8            | 0.7            |      | 0.6            |
|       |                |                |      |                |
| К     |                |                |      |                |
| Mean  | 0.9            | 0.8            |      | 0.7            |

Which model out of all trained should we use?

Return model trained on all data using best configuration. Should be best on average



| Folds | C <sub>1</sub> | C <sub>2</sub> | •••• | C <sub>n</sub> |
|-------|----------------|----------------|------|----------------|
| 1     | 0.9            | 0.8            |      | 0.7            |
| 2     | 0.8            | 0.7            |      | 0.6            |
|       |                |                |      |                |
| К     |                |                |      |                |
| Mean  | 0.9            | 0.8            |      | 0.7            |

Which model out of all trained should we use?

Return model trained on all data using best configuration. Should be best on average



Is its expected performance the Cross-Validated one?

| Folds | C1  | C <sub>2</sub> | •••• | C <sub>n</sub> |
|-------|-----|----------------|------|----------------|
| 1     | 0.9 | 0.8            |      | 0.7            |
| 2     | 0.8 | 0.7            |      | 0.6            |
|       |     |                |      |                |
| К     |     |                |      |                |
| Mean  | 0.9 | 0.8            |      | 0.7            |

Which model out of all trained should we use?

Return model trained on all data using best configuration. Should be best on average



Is its expected performance the Cross-Validated one?

No! The Cross-Validated accuracy of the best configuration is **optimistic**! (multiple induction problem, Jensen 1992)

## Conservatism vs. Optimism

- Each CV single-configuration estimates are conservative: they are based on training with fewer samples than the final model
- CV multiple-configuration estimates are **optimistic**:
- Winner depends on:
  - Sample size: smaller sample size optimism wins
  - Number of configurations tried: more configurations, optimism wins
  - "Correlation" of configuration: the more independent, the larger the optimism
  - **Distribution of true performances of configurations**: the less variant, the more optimism

### Choose Configuration AND Estimate Performance

o Hows

Train

### • Train: used to train model

| Train | Tune |
|-------|------|
|-------|------|

- Train: used to train model
- Tune: used to choose best configuration



- Train: used to train model
- o Tune: used to choose best configuration
- Estimate: used to estimate performance



- Train: used to train model
- o Tune: used to choose best configuration
- Estimate: used to estimate performance

o Called Train-Validation-Test in the literature

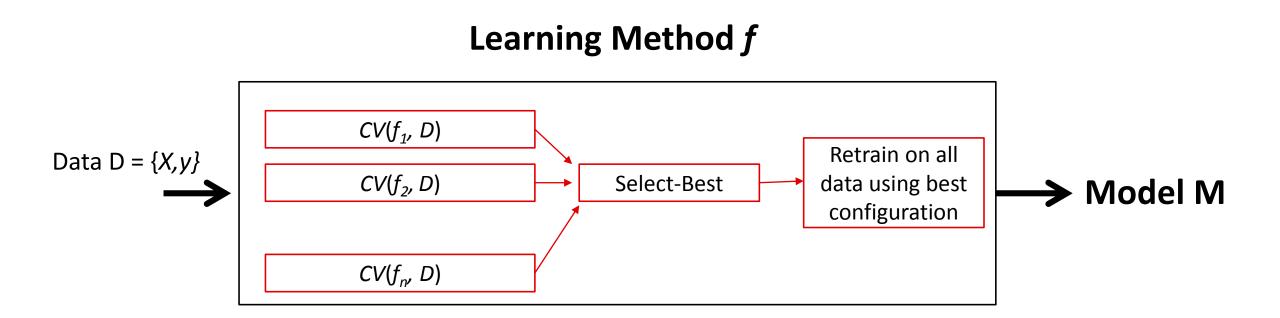
### Simple Train-Tune-Estimate HoldOut

| Train                                                                                                                                        |                                                  | Tune                                    | Estimate                               |                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------|-----------------------------|
| <b>STTE-Hold-Out</b> ( <b>Data D</b> , learning method f, <i>vectors of hps a</i> )<br>Randomly partition row indexes to TrainI, TuneI, EstI | 0                                                | $f_i = f(\cdot, a_i)$ : f is programmin | called a <b>closu</b><br>g really easy | <b>ire</b> ; makes          |
| For all hp $a_i$ in <b>a</b> //Try all configurations                                                                                        | • Trains C models, C the number of configuration |                                         | ber of configurations                  |                             |
| Create a new configuration $f_i = f(\cdot, a_i)$                                                                                             |                                                  | Correctly foll                          | ows the Golde                          | en Rule, correct estimation |
| $M_i = f_i (D (TrainI)), Est_i = l(y(TuneI), M_i(X(TuneI)))$                                                                                 | 0                                                | Does not trai                           | n on all data,                         | as it should                |
| End For                                                                                                                                      | 0                                                | Directly estim<br>learning func         |                                        | of a model, not of the      |
| i* = argmax <i>Est<sub>i</sub></i> // <i>Best configuration based on Tune set</i>                                                            | 0                                                | Pros: comput                            | tationally effic                       | ient, simple                |
| <b><u>Returned Model:</u></b> $M_{i^*}$                                                                                                      | 0                                                | Cons: loses d                           | ata to both Tu                         | une and Estimate            |

**<u>Returned Estimation:</u>**  $l(y(EstI), M_{i*}(X(EstI))$ 

• Use when sample size is really large

## Consider Tuning part of learning



## Cross-Validation with Tuning

Algorithm 2 CVT $(f, D = \{F_1, \dots, F_K\}, \Theta)$ : Cross-Validation With Tuning

**Input**: Learning method f, Data matrix  $D = \{\langle x_j, y_j \rangle\}_{j=1}^N$  partitioned into about equally-sized folds  $F_i$ , set of configurations  $\Theta$ 

**Output**: Model *M*, Performance estimation  $L_{CVT}$ , out-of-sample predictions  $\Pi$  on all folds for all configurations

1: for 
$$i = 1$$
 to  $C = |\Theta|$  do

- 2: // Create a closure of f (a new function) by grounding the configuration  $\theta_i$
- 3:  $f_i \leftarrow \text{Closure}(f(\cdot, \theta_i))$

4: 
$$\langle M_i, L_i, \Pi_i \rangle \leftarrow \mathbf{CV}(f_i, D)$$

#### 5: end for

6:  $i^{\star} \leftarrow \arg\min_i L_i$ 

7: // Final Model trained by f on all available data using the best configuration

8:  $M \leftarrow f(D, \theta_{i^{\star}})$ 

9: // Performance estimation; may be optimistic and should not be reported in general

10:  $L_{CVT} \leftarrow L_{i^{\star}}$ 

11: // Out-of-sample predictions are used by bias-correction methods

12: Collect all out-of-sample predictions of all configurations in one matrix  $\Pi \leftarrow [\Pi_1 \cdots \Pi_C]$ 

13: **Return**  $\langle M, L_{CVT}, \Pi \rangle$ 

### Nested Cross-Validation

- Cross-Validate a learning method that returns a single model, but performs tuning internally
- o Cross-Validate CVT!

Algorithm 3 NCV $(f, D = \{F_1, \ldots, F_K\}, \Theta)$ : Nested Cross-Validation

**Input**: Learning method *f*, Data matrix  $D = \{\langle x_j, y_j \rangle\}_{j=1}^N$  partitioned into about equally-sized folds  $F_i$ , set of configurations  $\Theta$ 

**Output**: Model *M*, Performance estimation  $L_{NCV}$ , out-of-sample predictions  $\Pi$  on all folds for all configurations

- 1: // Create closure by grounding the f and the  $\Theta$  input parameters of **CVT**
- 2:  $f' \leftarrow \mathbf{CVT}(f, \cdot, \Theta)$
- 3: // Notice: final Model is trained by f' on all available data; final estimate is provided by basic CV (no tuning) since f' returns a single model each time
- 4:  $\langle M, L_{NCV}, \Pi \rangle \leftarrow \mathbf{CV}(f', D)$
- 5: **Return**  $\langle M, L_{NCV} \rangle$

### NCV Trace: Model Production

### o Configurations a, b, Folds 1, 2, 3

| Train On                    | With Conf. | Produce        | Apply on | Accuracy                |
|-----------------------------|------------|----------------|----------|-------------------------|
| 1, 2                        | а          | $M_1$          | 3        | 0.7                     |
| 1, 3                        | а          | M <sub>2</sub> | 2        | 0.8                     |
| 2, 3                        | а          | M <sub>3</sub> | 1        | 0.6                     |
|                             |            |                |          | Mean <sub>a</sub> = 0.7 |
| 1, 2                        | b          | $M_4$          | 3        | 0.6                     |
| 1, 3                        | b          | $M_5$          | 2        | 0.7                     |
| 2, 3                        | b          | $M_6$          | 1        | 0.5                     |
|                             |            |                |          | Mean <sub>b</sub> = 0.6 |
| Select a                    |            |                |          |                         |
| 1, 2, 3                     | а          | M <sub>7</sub> | N/A      |                         |
| Return model M <sub>7</sub> |            |                |          |                         |

### NCV Trace: Estimation

o Fold 3 is held-out as an Estimation set

| Train On | With Conf. | Produce         | Apply on | Accuracy                 |
|----------|------------|-----------------|----------|--------------------------|
| 1        | а          | M <sub>8</sub>  | 2        | 0.7                      |
| 2        | а          | M <sub>9</sub>  | 1        | 0.8                      |
|          |            |                 |          | Mean <sub>a</sub> = 0.75 |
| 1        | b          | M <sub>10</sub> | 2        | 0.6                      |
| 2        | b          | M <sub>11</sub> | 1        | 0.7                      |
|          |            |                 |          | Mean <sub>a</sub> = 0.65 |
| Select a |            |                 |          |                          |
| 1, 2     | а          | M <sub>12</sub> | 3        | 0.9                      |

### NCV Trace: Estimation

o Fold 2 is held-out as an Estimation set

| Train On | With Conf. | Produce         | Apply on | Accuracy                 |
|----------|------------|-----------------|----------|--------------------------|
| 1        | а          | M <sub>13</sub> | 3        | 0.6                      |
| 3        | а          | M <sub>14</sub> | 1        | 0.7                      |
|          |            |                 |          | Mean <sub>a</sub> = 0.65 |
| 1        | b          | M <sub>15</sub> | 3        | 0.7                      |
| 3        | b          | M <sub>16</sub> | 1        | 0.8                      |
|          |            |                 |          | Mean <sub>a</sub> = 0.75 |
| Select b |            |                 |          |                          |
| 1, 3     | b          | M <sub>17</sub> | 2        | 0.7                      |

### NCV Trace: Estimation

o Fold 1 is held-out as an Estimation set

| Train On | With Conf. | Produce         | Apply on | Accuracy                |
|----------|------------|-----------------|----------|-------------------------|
| 2        | а          | M <sub>18</sub> | 3        | 0.8                     |
| 3        | а          | M <sub>19</sub> | 2        | 0.6                     |
|          |            |                 |          | Mean <sub>a</sub> = 0.7 |
| 2        | b          | M <sub>20</sub> | 3        | 0.6                     |
| 3        | b          | M <sub>21</sub> | 2        | 0.6                     |
|          |            |                 |          | Mean <sub>a</sub> = 0.6 |
| Select a |            |                 |          |                         |
| 2, 3     | а          | M <sub>22</sub> | 1        | 0.8                     |

**Final Estimate**: mean of 0.9 + 0.7 + 0.8 = **0.8** 

# How many models trained?

C: number of configurations

K: number of folds

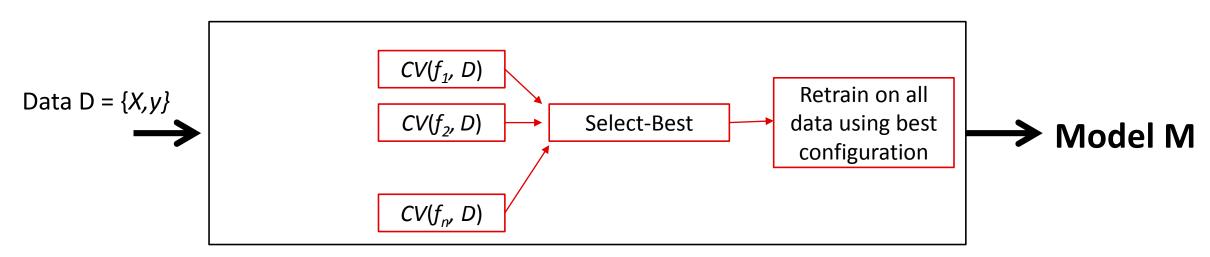
- To produce the final model CVT is called with K folds
  - C configurations × K folds for estimating best configuration
  - +1 to train on the full dataset
  - $\circ = \mathbf{C} \times \mathbf{K} + 1$
- To estimate its performance
  - Run CVT with K-1 folds, K times
  - $\circ \quad = (\mathbf{C} \times (\mathbf{K} 1) + 1) \times \mathbf{K}$
- Total number of models trained =  $C \times K^2 + K + 1$
- Expensive

## Nested-Cross Validation

- Fold loop within CVT: inner CV loop
- Fold loop within CV: outer CV loop
- The **standard protocol** for small-sample, omics data
- Want more accurate estimation, run Repeated-CV instead of CV
- Want even more accurate estimation, run **Repeated**-**CVT** instead of CVT
- Computationally expensive O(K<sup>2</sup>) models per configuration; Can we do better?

### Let's Focus on Selection

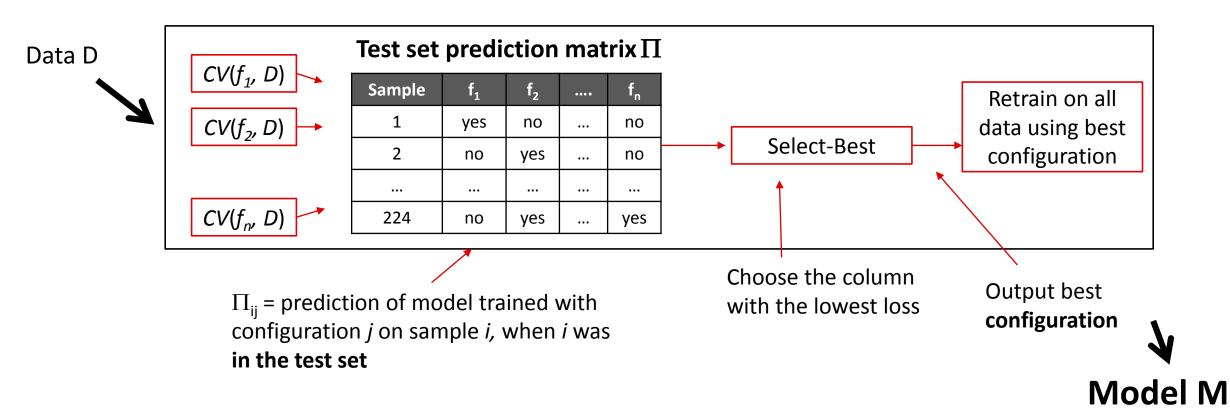
### Learning Method *f*



o Our selection strategy creates the estimation problem

### Let's Focus on Selection

### Learning Method *f*



#### **Test set prediction matrix**

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 2      | no             | yes            |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |

No need to train new models, computationally efficient

Can safely replace nested Cross-Validation; Next standard?



**Test set prediction matrix** 

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 2      | no             | yes            |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |

No need to train new models, computationally efficient

Can safely replace nested Cross-Validation; Next standard?

Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 2      | no             | yes            |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |



### Solution:

- Estimate the performance of the configuration selection procedure:
  - Use bootstrapping or CV on the test prediction matrix!
    - Select best configuration on a subset of the matrix
    - Estimate performance of the selected configuration on the held-out set

No need to train new models, computationally efficient

Can safely replace **nested Cross-Validation; Next standard**?

#### Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 2      | no             | yes            |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |

Bootstrap Bias Corrected CV

I. Tsamardinos, E. Greasidou, G. Borboudakis, "Bootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-Validation", **Machine Learning** 2018

#### **Test set prediction matrix**

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 2      | no             | yes            |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 1      | yes            | no             |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |

|   | Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|---|--------|----------------|----------------|------|----------------|
|   | 2      | no             | yes            |      | yes            |
| L | 3      | yes            | no             |      | no             |
|   |        |                |                |      |                |
|   | 220    | no             | yes            |      | yes            |

#### Bootstrap Bias Corrected CV

Select best Configuration, i.e. C<sub>1</sub>

Sample f<sub>2</sub> f<sub>n</sub> .... 1 yes no no ••• 1 yes no no ••• ••• ••• ••• ••• ••• 224 no yes yes •••

Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |   |
|--------|----------------|----------------|------|----------------|---|
| 1      | yes            | no             |      | no             |   |
| 2      | no             | yes            |      | no             | _ |
|        |                |                |      |                | ] |
| 224    | no             | yes            |      | yes            |   |

|   | Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|---|--------|----------------|----------------|------|----------------|
|   | 2      | no             | yes            |      | yes            |
| 4 | 3      | yes            | no             |      | no             |
|   |        |                |                |      |                |
|   | 220    | no             | yes            |      | yes            |

#### Bootstrap Bias Corrected CV

Select best Configuration, i.e. C<sub>1</sub>

Sample f<sub>2</sub> f<sub>n</sub> t, .... 1 yes no no ••• 1 yes no no ••• ••• ... ••• ••• ••• 224 no yes yes •••

Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 2      | no             | yes            |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |

Measure Performance P<sub>1</sub> of C<sub>1</sub>

|   | Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|---|--------|----------------|----------------|------|----------------|
|   | 2      | no             | yes            |      | yes            |
| 4 | 3      | yes            | no             |      | no             |
|   |        |                |                |      |                |
|   | 220    | no             | yes            |      | yes            |

Bootstrap Bias Corrected CV

Select best Configuration, i.e. C<sub>1</sub>

Sample f<sub>2</sub> f<sub>n</sub> t₁ .... 1 yes no no ••• 1 yes no no ••• ••• ... ••• ••• ••• 224 no yes yes •••

Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |   |
|--------|----------------|----------------|------|----------------|---|
| 1      | yes            | no             |      | no             |   |
| 2      | no             | yes            |      | no             | - |
|        |                |                |      |                |   |
| 224    | no             | yes            |      | yes            |   |

Measure Performance P<sub>1</sub> of C<sub>1</sub>

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 2      | no             | yes            |      | yes            |
| 3      | yes            | no             |      | no             |
|        |                |                |      |                |
| 220    | no             | yes            |      | yes            |

#### B=1

Bootstrap Bias Corrected CV

| Sample | f <sub>1</sub> | f <sub>2</sub> | <br>f <sub>n</sub> |  |
|--------|----------------|----------------|--------------------|--|
| 1      | yes            | no             | <br>no             |  |
| 1      | yes            | no             | <br>no             |  |
|        |                |                | <br>               |  |
| 224    | no             | yes            | <br>yes            |  |

Measure Performance  $P_1$  of  $C_1$ 

no

yes

...

no

Sample

2

3

...

220

Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |  |
|--------|----------------|----------------|------|----------------|--|
| 1      | yes            | no             |      | no             |  |
| 2      | no             | yes            |      | no             |  |
|        |                |                |      |                |  |
| 224    | no             | yes            |      | yes            |  |

#### Select best Configuration, i.e. C<sub>1</sub>

#### Select best Configuration, i.e. C<sub>2</sub>

| Samp | le f | 1 | f <sub>2</sub> | <br>f <sub>n</sub> |
|------|------|---|----------------|--------------------|
| 2    | n    | 0 | yes            | <br>yes            |
| 2    | n    | 0 | yes            | <br>yes            |
|      |      |   |                | <br>               |
| 210  | n    | 0 | yes            | <br>yes            |

#### Measure Performance P<sub>2</sub> of C<sub>2</sub>

...

...

f<sub>n</sub>

yes

no

...

yes

•••

...

•••

•••

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 3      | yes            | no             |      | no             |
|        |                |                |      |                |
| 220    | no             | yes            |      | yes            |

#### B=1

t,

yes

no

•••

yes

B=1000

#### Bootstrap Bias Corrected CV

|   | Sample | f <sub>1</sub> | f <sub>2</sub> | <br>f <sub>n</sub> |  |
|---|--------|----------------|----------------|--------------------|--|
|   | 1      | yes            | no             | <br>no             |  |
| - | 1      | yes            | no             | <br>no             |  |
|   |        |                |                | <br>               |  |
|   | 224    | no             | yes            | <br>yes            |  |

t,

yes

no

•••

yes

f<sub>n</sub>

yes

no

...

yes

...

•••

...

•••

•••

Measure Performance P<sub>1</sub> of C<sub>1</sub>

no

yes

...

no

Sample

2

3

...

220

Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |  |
|--------|----------------|----------------|------|----------------|--|
| 1      | yes            | no             |      | no             |  |
| 2      | no             | yes            |      | no             |  |
|        |                |                |      |                |  |
| 224    | no             | yes            |      | yes            |  |

#### Select best Configuration, i.e. C<sub>1</sub>

#### Select best Configuration, i.e. C<sub>2</sub>

| Sample | f <sub>1</sub> | f <sub>2</sub> | <br>f <sub>n</sub> |
|--------|----------------|----------------|--------------------|
| 2      | no             | yes            | <br>yes            |
| 2      | no             | yes            | <br>yes            |
|        |                |                | <br>               |
| 210    | no             | yes            | <br>yes            |

Measure Performance P<sub>2</sub> of C<sub>2</sub>

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 3      | yes            | no             |      | no             |
|        |                |                |      |                |
| 220    | no             | yes            |      | yes            |



B=1

B=1000

#### Bootstrap Bias Corrected CV

Select best Configuration, i.e. C<sub>1</sub>

|   | Sample     | f <sub>1</sub> | f <sub>2</sub> |         | f <sub>n</sub> |  |
|---|------------|----------------|----------------|---------|----------------|--|
|   | 1          | yes            | no             |         | no             |  |
|   | 1          | yes            | no             |         | no             |  |
|   |            |                |                |         |                |  |
|   | 224        | no             | yes            |         | yes            |  |
| Ν | Aeasure Pe | erforma        | ance P         | 1 of C1 |                |  |
|   | Sample     | f <sub>1</sub> | f <sub>2</sub> | ••••    | f <sub>n</sub> |  |
|   | 2          | no             | yes            |         | yes            |  |
|   | 3          | yes            | no             |         | no             |  |
|   |            |                |                |         |                |  |

220

no

yes

**B=1** 

yes

#### Select best Configuration, i.e. C<sub>2</sub>

Measure Performance  $P_2$  of  $C_2$ 

f₁

yes

yes

...

no

f,

no

no

...

yes

**B=1000** 

....

•••

...

...

...

f<sub>n</sub>

no

no

...

yes

Sample

1

3

...

220

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 2      | no             | yes            |      | yes            |
| 2      | no             | yes            |      | yes            |
|        |                |                |      |                |
| 210    | no             | yes            |      | yes            |

Same procedure used to provide confidence intervals!

| Performance    |   | $\sum_{i=1}^{B}$ | $P_i$ |
|----------------|---|------------------|-------|
| r en loi mance | _ | B                |       |

Performance measured on new samples each time

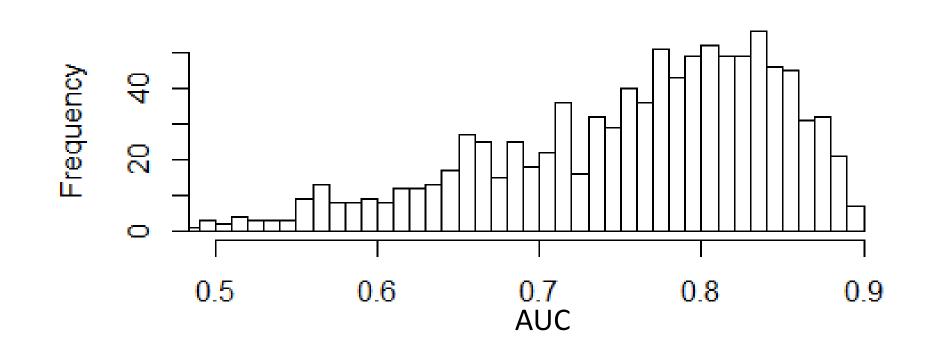
#### Bootstrap Bias Corrected CV

I. Tsamardinos, E. Greasidou, G. Borboudakis, "Bootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-Validation", **Machine Learning** 2018

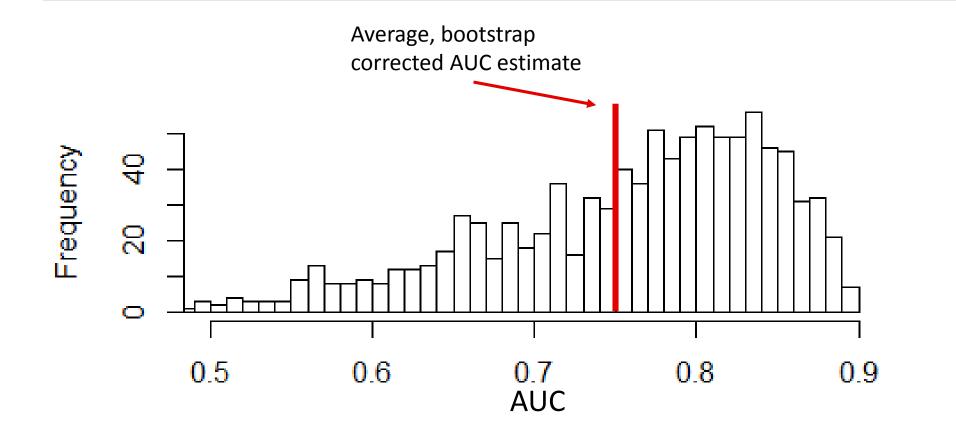
#### Test set prediction matrix

| Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> |
|--------|----------------|----------------|------|----------------|
| 1      | yes            | no             |      | no             |
| 2      | no             | yes            |      | no             |
|        |                |                |      |                |
| 224    | no             | yes            |      | yes            |

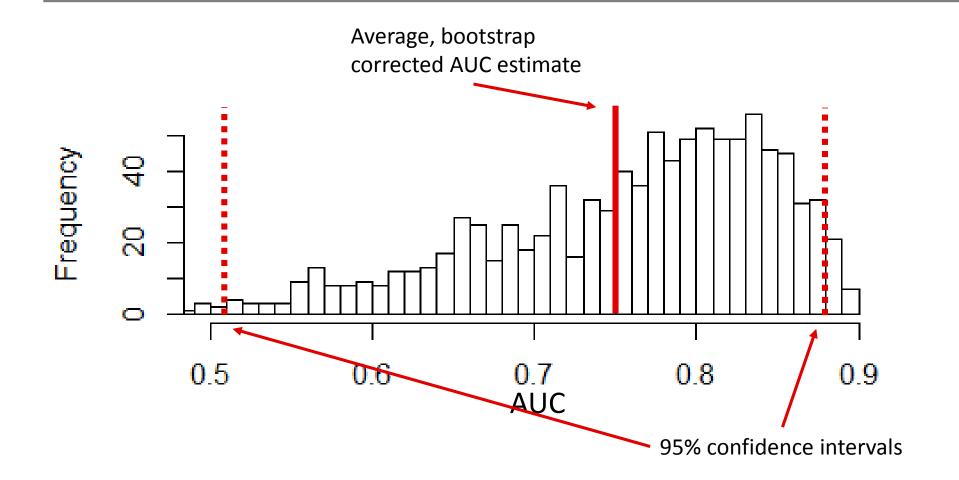
### Generation of Cls



### Generation of Cls



### Generation of Cls



#### **Algorithm 5 BBC-CV** $(f, D = \{F_1, \ldots, F_K\}, \Theta)$ : Cross-Validation with Tuning, Bias removal using the BBC method

**Input**: Learning method f, Data matrix  $D = \{\langle x_j, y_j \rangle\}_{j=1}^N$  partitioned into approximately equally-sized folds  $F_i$ , set of configurations  $\Theta$ 

**Output**: Model *M*, Performance estimation  $L_{BBC}$ , 95% confidence interval [*lb*, *ub*]

- 1: // Notice: the final Model is the same as in CVT
- 2:  $\langle M, L_{CVT}, \Pi \rangle \leftarrow \mathbf{CVT}(f, D, \Theta)$

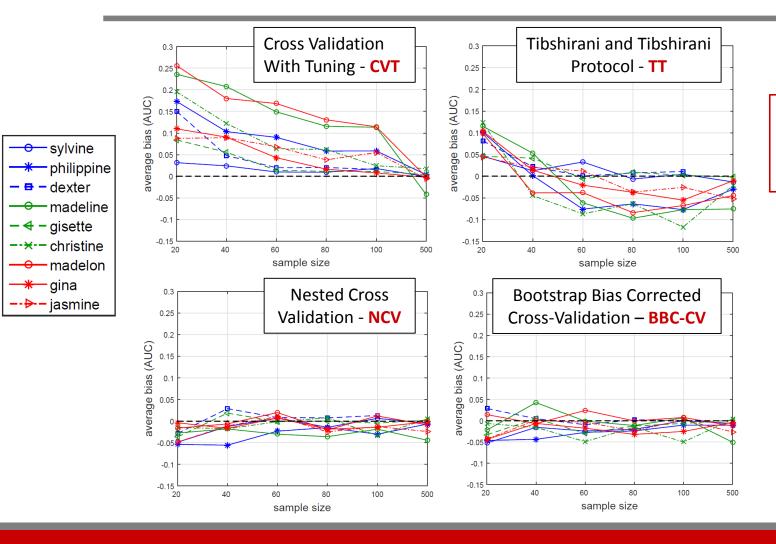
3: for b = 1 to *B* do

- 4:  $\Pi^b \leftarrow$  sample with replacement *N* rows of  $\Pi$
- 5:  $\Pi^{b} \leftarrow \Pi \setminus \Pi^{b} // \text{ get samples in } \Pi$  and not in  $\Pi^{b}$
- 6: // Apply the configuration selection method on the bootstrapped out-of-sample predictions 7:  $j \leftarrow \mathbf{ccs}(\Pi^b, y^b)$
- 8: // Estimate the error of the selected configuration on predictions not selected by this bootstrap
- 9:  $L_b \leftarrow l(y \setminus b, \Pi(:, j) \setminus b)$

#### 10: **end for**

11:  $L_{BBC} = \frac{1}{B} \sum_{b=1}^{B} L_b$ 12: // Compute 95% confidence interval;  $L_{(k)}$  denotes the *k*-th value of  $L_b$ 's in ascending order 13:  $[lb, ub] = [L_{(0.025 \cdot B)}, L_{(0.975 \cdot B)}]$ 14: **Return**  $\langle M, L_{BBC}, [lb, ub] \rangle$ 

### Cross Validation bias correction

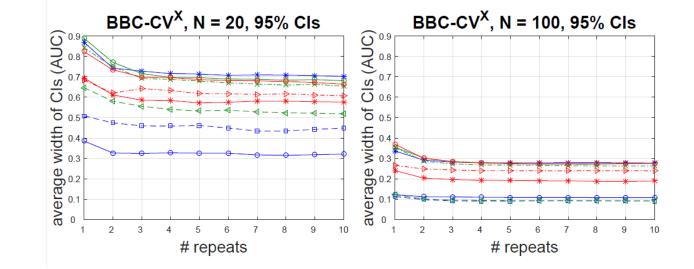


Average estimated bias (over 20 sub-datasets for each original dataset) of the CVT, TT, NCV and BBC-CV estimates of performance.

- **CVT** is optimistically biased for sample size  $N \le 100$ .
- NCV and BBC-CV, both have low bias though results vary with dataset.

# Multiple Repeats with Different Fold Partitions

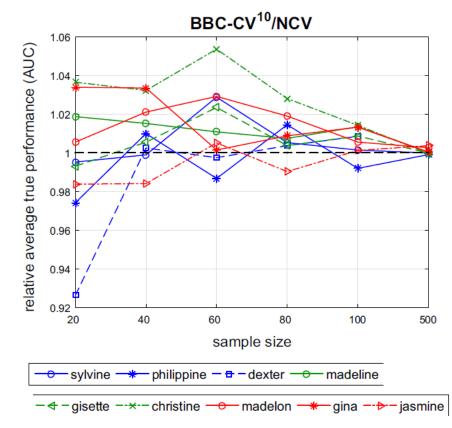
- Different splits to folds, give different estimates
- **Repeat** the cross validation procedure with different splits



- Reduces confidence intervals
- Improves selection of best configuration

### NCV vs Repeated BBC

- Is it better to use NCV with 10 folds or BBC with 10 Repeats?
  - o same number of trained models
- BBC-CV<sup>10</sup> returns on average better models for small sample sizes



### BBC-CV

- Pros: Generally applicable to any type of data, any type of outcome, any performance metric
- Pros: Reduces complexity from O(K<sup>2</sup>) models per configuration to O(K)
- o Pros: Generation of Confidence Intervals comes for free
- Pros: better than NCV for the same budget

 Cons: Requires a predetermined set of configurations; does not work with dynamic search strategies

## BBCD: BBC with Dropping

- Do we really need to train models for all folds for all configurations?
  - Can't we detect the inferior configurations with after just a few folds?
  - And stop training further models?

## BBCD: BBC with Dropping

#### Test set prediction matrix

|                       | Sample | f <sub>1</sub> | f <sub>2</sub> | •••• | f <sub>n</sub> | у   |
|-----------------------|--------|----------------|----------------|------|----------------|-----|
| Samples of            | 1      | yes            | no             |      | no             | No  |
| fold F <sub>1</sub>   | 2      | no             | yes            |      | no             | Yes |
|                       | 3      | Yes            | Yes            |      | No             | No  |
| Samples of            | 4      | (empty)        | (empty)        |      | (empty)        | No  |
| Samples of fold $F_2$ |        |                |                |      |                | Yes |
|                       |        |                |                |      |                | No  |
|                       |        |                |                |      |                |     |
| Samples of            |        |                |                |      |                |     |
| fold F <sub>3</sub>   | 224    |                |                |      |                | Yes |

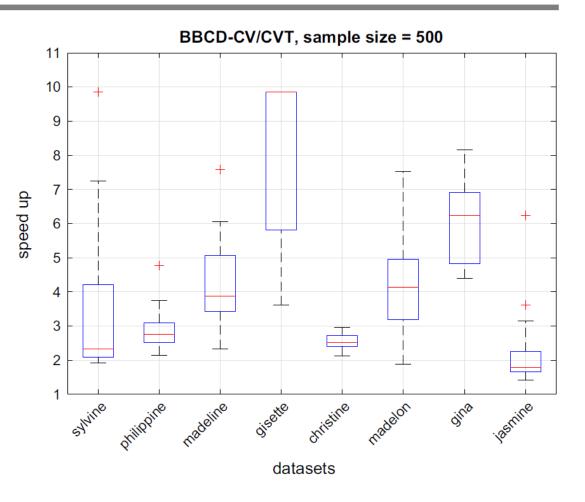
• After first CV iteration:

Training data all folds but  $F_1$ Test data  $F_1$ 

- Models produced with configuration  $f_1$  seem inferior
- Perform a statistical test to determine inferiority
- If true, drop  $f_1$  from subsequent CV iterations

### BBCD

- Selects equally good models when samples size > 500
- Speed up of 5-6 times for 10-fold CV
- Total speed up vs. 10fold NCV about 40-50



#### Practical advise for Tune-n-Estimate

- For samples sizes < 250 per class use BBC with multiple repeats
- For sample 250 < sizes < 2000 Use BBCD
- For larger sample sizes use hold-out

## User Preferences

o Different analyses, different needs

- o Different analyses, different needs
- Not everybody cares only for predictive performance!

- o Different analyses, different needs
- Not everybody cares only for predictive performance!
- What are the different criteria for a successful analysis?

#### • Predictive performance

- o Important for models to put in operational use
- o E.g., models for translational medicine
- o Use maximum number of folds, several repeats, more algorithms, more hyper-parameter values

- **Knowledge Discovery** (in the form of Feature Selection)
  - Important when trying to get intuition into the mechanisms (causality) of the data generating mechanism
  - Or, when trying to reduce cost of measuring the features (E.g., models in molecular biology)
  - Try configurations with feature selection only
  - Try feature selection hyper-parameters that force the selection of few features

#### o Interpretability

- Important when gaining intuition how the features determine the outcome (E.g., medicine)
- Enforce both feature selection and humanlyinterpretable models
- o Generalized linear models
- o Decision Trees

#### o Speed of analysis

Important for initial estimation of the information-value

 Use fewer algorithms, fewer hyper-parameter values, less expensive algorithms

#### o Speed of Model Execution

- Important for real-time predictions (E.g., text classification models on a popular web-server)
- Enforce only fast-executing models, e.g., generalized linear models, decision trees

### Trade-off estimation

- When restricting search to
  - o only interpretable models
  - o only with feature selection
  - o only with fast-executing models

 Compare against the unrestricted search results to estimate the performance loss

• **Tuning** is very **important** for predictive performance

- **Tuning** is very **important** for predictive performance
- **Tuning** (trying multiple configurations)leads to **overestimations**; it requires special estimation protocols

- **Tuning** is very **important** for predictive performance
- Tuning (trying multiple configurations)leads to overestimations; it requires special estimation protocols
- **Beware of "choosing the best of"** decisions in general! Lead to overestimation!

- **Tuning** is very **important** for predictive performance
- Tuning (trying multiple configurations)leads to overestimations; it requires special estimation protocols
- **Beware of "choosing the best of"** decisions in general! Lead to overestimation!
- NCV is the current standard: it cross-validates a learner that CVs configurations and chooses the best

- **Tuning** is very **important** for predictive performance
- Tuning (trying multiple configurations)leads to overestimations; it requires special estimation protocols
- **Beware of "choosing the best of"** decisions in general! Lead to overestimation!
- NCV is the current standard: it cross-validates a learner that CVs configurations and chooses the best
- **BBC** bootstraps the configuration strategy

# Summary

- **Tuning** is very **important** for predictive performance
- Tuning (trying multiple configurations)leads to overestimations; it requires special estimation protocols
- **Beware of "choosing the best of"** decisions in general! Lead to overestimation!
- NCV is the current standard: it cross-validates a learner that CVs configurations and chooses the best
- **BBC** bootstraps the configuration strategy
- **BBCD** drops early inferior configurations

# Summary

- **Tuning** is very **important** for predictive performance
- Tuning (trying multiple configurations)leads to overestimations; it requires special estimation protocols
- **Beware of "choosing the best of"** decisions in general! Lead to overestimation!
- NCV is the current standard: it cross-validates a learner that CVs configurations and chooses the best
- **BBC** bootstraps the configuration strategy
- **BBCD** drops early inferior configurations
- **BBC and BBCD** a faster, better proposed alternative

# Summary

- **Tuning** is very **important** for predictive performance
- Tuning (trying multiple configurations)leads to overestimations; it requires special estimation protocols
- **Beware of "choosing the best of"** decisions in general! Lead to overestimation!
- NCV is the current standard: it cross-validates a learner that CVs configurations and chooses the best
- **BBC** bootstraps the configuration strategy
- **BBCD** drops early inferior configurations
- **BBC and BBCD** a faster, better proposed alternative
- Different analysis preferences require adjusting the pipeline

The concepts of hyper-parameters and configurations

The concepts of hyper-parameters and configurations

✓ The Golden Rule of estimation

- The concepts of hyper-parameters and configurations
- ✓ The Golden Rule of estimation
- ✓ Common pitfalls of analysis:
  - ✓ Not CVing all steps of the analysis
  - Reporting the best of CVed performances

- The concepts of hyper-parameters and configurations
- ✓ The Golden Rule of estimation
- Common pitfalls of analysis:
  - ✓ Not CVing all steps of the analysis
  - Reporting the best of CVed performances
- Grid Search in the space of hyper-parameters

- The concepts of hyper-parameters and configurations
- ✓ The Golden Rule of estimation
- Common pitfalls of analysis:
  - ✓ Not CVing all steps of the analysis
  - Reporting the best of CVed performances
- ✓ Grid Search in the space of hyper-parameters
- ✓ NCV and BBC

- The concepts of hyper-parameters and configurations
- ✓ The Golden Rule of estimation
- Common pitfalls of analysis:
  - ✓ Not CVing all steps of the analysis
  - Reporting the best of CVed performances
- ✓ Grid Search in the space of hyper-parameters
- ✓ NCV and BBC
- Should be enough to construct a basic, but quite general and correct automated pipeline

#### References

- C. E. Rasmussen & C. K. I. Williams. "Gaussian Processes for Machine Learning", the MIT Press, 2006
- I. Tsamardinos, E. Greasidou, G. Borboudakis, "Bootstrapping the Out-of-sample Predictions for Efficient and Accurate Cross-Validation", Machine Learning 2018

# End of Part II