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Outline

o Part1(45) o Part Il (45’)
o Introduction to the problem and o Feafure Selection and Knowledge
the tutorial Discovery
o Estimation of performance o Hyper-parameter search strategies
(single configuration) o Part IV (45)
o Partll (45" o Post-analysis interpretation and

o visualizations
o Estimation of performance

(multiple configurations) o Al-assisted Aufo-ML (algorithm
selection, pipeline synthesis, meta-
o Incorporating User Preferences learning, feature learning)
O Pu’r’ring,oll together — The Just Add
Data Bio plafform

o Tools for Auto-ML



Tune and Estimate




Cholices, choices, cholices

o Multiple algorithms available and applicable for all
steps of the analysis (feature selection, classification,
etfc.)

o Each algorithm has a set of “tuning knolbs”

o Optimize choice of combinations of algorithms and
their “tuning knolbs”



Hyper-Parameters vs. Parameters

o A parameter of a model (e.g., linear regression) is a quantity
directly estimated from the dato

o Inlinearregressiony =w, X, + ... +w, X, +b, w's and b are
parameters, estimated from the data

o A hyper-parameter of an algorithm is a quantity not
estimated by the data but set by the user

o Determines the sensitivity of an algorithm to detecting patterns

o A hyper-parameter may, of course, be estimated indirectly by
CV (then it becomes a parameter in the complete procedure)



Examples of Hyper-Parameters

o K-Nearest Neighbors: K, distance function
o Decision Trees: MaxPChance (level of pruning)

o Support Vector Machines: Cost C, kernel K (each
one has its own hyper-parameters)

o Univariate Feature Selection: p-value threshold
o Lasso: regularization parameter lambdao

o Gaussian processes can have dozens of hyper-

paArameters [c. E. Rasmussen & C. K. I. Williams. "Gaussian Processes for Machine
Learning"”, the MIT Press, 2006]



From Hyper-Parameters to
Configurations

o Which algorithm to choose can also be seen as a
hyper-parameter!

o Which data representation to use is a hyper-parameter
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From Hyper-Parameters to
Configurations

o Which algorithm to choose can also be seen as a
hyper-parameter!

o Which data representation to use is a hyper-parameter

o Point: all our choices can be represented with a
vector g of hyper-parameter values!




More algorithms vs. better funing

o Personal Experience:

o Tuning of flexible, “good” algorithms is more important
than trying a plethora of algorithms with default values

o Personal choices: SVMs, Random Forests, Gradient
Boosting Trees (can represent all functions), ensemble
methods

o Feature construction, data representation,
data transformations, more important than including more
learning algorithms



Data D = {X,y}
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Hyper-Parameters and Configurations

o Configuration: an instantiation of a learning
method f with specific hyper-parameter values.

o A configuration coincides with a non-
hyperparameterized learning method.

o A configuration completely defines which
computations to perform all the way from data to model.
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Tuning vs Model Selection

o Model selection (statistics):

o produce several models, on all the data, select the “best”

o Typically, the selection is manual based on some criteria (fitting
+ simplicity, distribution of residuals, etc.)

o Tuning [Tsamardinos et al. Machine Learning, 2018]
o Tuning = configuration selection
o Only one model is produced on all the data (no model selection)
o The model is produced by the “best” configuration

o “Best” is found by tuning the hyper-parameter



Grid Hyper-parameter Search

o A priori decide which algorithms 1o fry in
each step

o A priori decide the values to try for
each hyper-parameter

o Try all combinations (full-factorial)
o Called Grid Search

o Try values {0.01, 0.05, 0.1} for hp a

o Try values {1, 2, 3} forhp b

o Static hyper-parameter search
strategies predetermine the
configurations to try
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Grid Hyper-parameter Search

o A priori decide which algorithms 1o fry in
each step

o A priori decide the values to try for

each hyper-parameter 0{0.01,0.05,0.1}

o Try all combinations (full-factorial) 0=0.02, 0=0.05, @=0.1,

o Called Grid Search =t hE b

o Try values {0.01, 0.05, 0.1} for hp @ el ciinre
o Try values {1, 2, 3} forhp b

0=0.02, =0.05, 0=0.1,
o Static hyper-parameter search b=3  b=3
strategies predetermine the
configurations to try



Example of Tune-n-Estimate
(the wrong way)

o Construct all models from each configuration f., i=1, ..., 100

o Select Best
o Report its estimated performance

for each configuration f;

(Perf; , model; ) = Hold-Out(D, f;)
end for

j = argmax Perf;
return (Perf; , model;)



Construct all Models, Select Best

Algorithm Performance (Loss)

K-NN K=1 0.81
K=2 0.84

K=5 0.88

DT MaxPChance=0.01 0.83
MaxPChance=0.05 0.9
MaxPChance=0.1 0.81

SB =0 0.75
=1 0.83
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Construct all Models, Select Best

Algorithm Performance (Loss)

K-NN K=1 0.81

K=2 0.84

K=5 0.88

DT MaxPChance=0.01 0.83
MaxPChance=0.05 0.9
MaxPChance=0.1 0.81

SB =0 0.75

=1

Selected model




Construct all Models, Select Best

K-NN K=1 - Returned Estimate
K=2 .
(WRONG WAY)

K=5
DT MaxPChance=0.01
MaxPChance=0.05
MaxPChance=0.1

SB =0
=1

Selected model



Construct all Models, Select Best

for each configuration f;

(Perf; , model, ) = Hold-Out2(D, f,)
end for

] = argmax Perf:
return (Perf; , model; )



Construct all Models, Select Best

for each configuration f;

(Perf; , model, ) = Hold-Out2(D, f,)
end for

] = argmax Perf;
return (Perf; , model; )

It peeks in the test
cases to select the

final model:
of Golden Rule




Extreme Distributions: 1 Model

ng | porameter __[toss
K-NN K=1

180

160

140

Freguency
]
(]
T

e o
[} [}
T T

[0
[ ]
T

—_

=

[}
T

oo
[ ]
T

1]
a.

True accuracy 0.85, Test size 50, 1000 datasets

65 0.7 075 na D.as 0o 0.95 1
Accuracy Estimate, Sample Mean = 0.845200, std =0.050226

Assume: Equal true accuracies 85%
Mean =0.85
Std = sqrt(N-p-(1-p)) / N = 0.0505




Extreme Distributions: 8 Models

B - -

M Parameter Loss

True accuracy 0.85, Test size 50, 1000 datasets, Best of B

300
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250 F
K=2
200 F
K=5 .
o
DT MaxPChance=0.01 g
L.
MaxPChance=0.05 100
MaxPChance=0.1 6ol
SB 1=0 ,
I]IZI'.E- 082 084 086 0.88 09 092 094 095 098 1
|=1 Accuracy Estimate, Sample Mean = 0.916700, std =0.026195

Assume: Equal true accuracies 85%Mean,
Std follow an Extreme Distribution
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O
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Let m, ..., m,be the sample performances of each configuration
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For unbiased estimation we have p, = E(m,) ..., p, = E(M,)

We return as our estimate the best sample performance max(m; ...,
M)
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Performance Estimation Bias

o Letm, ..., m,be the sample performances of each configuration
o Letp, ..., n, be the frue performances of each configurafion
o Forunbiased estimation we have p, = E(m,) ..., p, = E(m,)

o We return as our estimate the best sample performance max(m; ...,
M)

o On average we return E(max(m, ..., m,))
o True best performance is max(y, ..., p,) = max(e(m,), ..., E(m,))

o Our estimate on average E(max(m; ..., m,)) > max(E(m,), ..., E(m,)) true
best, by Jensen's inequality
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Which model out
of all trained

should we use?

r -
Test set prediction matrix e
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Which model out
of all trained Return model trained
should we use? on all data using best
configuration. Should

be best on average

Test set prediction matrix

Folds C, C, (o%
1 0.9 0.8 0.7
2 0.8 | 0.7 0.6
K
"""" B I
{09 {08! .1 07 !




Which model out
of all trained Return model trained
should we use? on all data using best
configuration. Should

be best on average

Test set prediction matrix

Folds C, G .. C,
1 0.9 0.8 0.7
2 0.8 | 0.7 0.6 )
s its expected
K performance the
08 | .. | 07 | Cross-Validated

i Mean ﬂi 0.9 . .
one?




Which model out
of all trained Return model trained
should we use? on all data using best
configuration. Should

be best on average

Test set prediction matrix

Folds C, C, C,
1 0.9 0.8 0.7
2 08 | 07 | .. 0.6 )
s its expected
- performance the No! The Cross-Validated
| Mean | 09 {08 [ . | 07 | Cross-Validated accuracy of the best
one? configuration is

optimistic!
(multiple induction
problem, Jensen 1992)




Conservatism vs. Optimism

o Each CV single-configuration estimates are conservative:
’rheé olre based on fraining with fewer samples than the final
mode

o CV multiple-configuration estimates are optimistic:
o Winner depends on:
o Sample size: smaller sample size optimism wins

o Number of configurations tried: more configurations, optimism
wins

o “Correlation” of configuration: the more independent, the larger
the optimism

o Distribution of true performances of configurations: the less
variant, the more optimism



Choose Configuration AND Estimate
Performance

o How?e
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Choose Model AND Estimate
Performance

Train Estimate

o Train: used fo frain model
o Tune: used to choose best configuration
o Estimate: used to estimate performance

o Called Train-Validation-Test in the literature



Simple Train-Tune-Estimate

HoldQut

Train

Tune Estimate

STTE-Hold-Out (Data D, learning method f, vectors of hps a)

Randomly partition row indexes to Trainl, Tunel, Estl
For all hp a;in a //Try all configurations
Create a new configuration f, = f(-, &)
M, = f, ( D (Trainl)), Est; = I(y(Tunel), M,(X(Tunel))
End For
I* = argmax Est; // Best configuration based on Tune set

Returned Model: M;.

Returned Estimation: I(y(Estl), M.(X(Estl))

f.=1(-, a): fis called a closure; makes
programming really easy

Trains C models, C the number of configurations
Correctly follows the Golden Rule, correct estimation
Does not train on all data, as it should

Directly estimates the loss of a model, not of the
learning function

Pros: computationally efficient, simple
Cons: loses data to both Tune and Estimate

Use when sample size is really large



Consider Tuning part of learning

Learning Method f

CV(f, D)
Data D = {X,y} ; \ Retrain on all
—_— CV(f,, D) —> |  Select-Best *| data using best > Model M

/‘ configuration
cvf,, D)




Cross-Validation with Tuning

Algorithm 2 CVT(f, D = {F,, ..., Fx}, ®): Cross-Validation With Tuning

Input: Learning method f, Data matrix D = {{x;, }'J,-}}J‘Ll partitioned into about equally-sized folds F;, set

of configurations &
Output: Model M, Performance estimation Ly 7. out-of-sample predictions 7 on all folds for all configu-
rations

I:fori =1toC =|®@|do

2: [/l Create a closure of f (a new function) by grounding the configuration #;

3:  fi < Closure(f(-, 6;))

4: (M;.L;.IT;) < CV(f;. D)

5: end for

6: i* < argmin; L;

7: // Final Model trained by f on all available data using the best configuration

8 M <« f(D,0;+)

9: // Performance estimation: may be optimistic and should not be reported in general

10: Lcyr <« Lj»
I1: // Out-of-sample predictions are used by bias-correction methods

12: Collect all out-of-sample predictions of all configurations in one matrix IT < [ITy --- 1]
13: Return (M. Lcyr, IT)




Nested Cross-Validation

o Cross-Validate a learning method that returns o
single model, but performs tuning internally

o Cross-Validate CVT!

Algorithm 3NCV(f, D ={Fy, ..., Fg}, ®): Nested Cross-Validation

Input: Learning method f, Data matrix D = {(x jsy j)} ?":1 partitioned into about equally-sized folds F;, set

of configurations &

Output: Model M, Performance estimation L ycy . out-of-sample predictions [T on all folds for all configu-

rations

I: /I Create closure by grounding the f and the @ input parameters of CVT

2: [/« CVT(f,-,O)

3: // Notice: final Model is trained by f” on all available data; final estimate is provided by basic CV (no
tuning) since [’ returns a single model each time

4: (M, Lycy.IT) < CV(f', D)

: Return (M, Lycvy)

n




NCV Trace: Model Production

o Configurations a, b, Folds 1, 2, 3
1,2 a M, 3 0.7

1,3 a M, 2 0.8

2,3 a M, 1 0.6
Mean, = 0.7

1,2 b M, 3 0.6

1,3 b M. 2 0.7

2,3 b Mg 1 0.5
Mean, = 0.6

Select a
1,2,3 a M, N/A

Return model M,



NCV Trace: Estimation

o Fold 3 is held-out as an Estimation set

With Conf. Apply on
1 a M, 2 0.7

2 a Mg 1 0.8
Mean, = 0.75
1 b M, 2 0.6
2 b M, 1 0.7
Mean, = 0.65
Select a
1,2 a M, 3 0.9



NCV Trace: Estimation

o Fold 2 is held-out as an Estimation set

With Conf, Apply on
1 a M 3 0.6

3 a My, 1 0.7

Mean, = 0.65
1 b M, 3 0.7
3 b M, 1 0.8

Mean,_ = 0.75
Select b
1,3 b M, 2 0.7



NCV Trace: Estimation

o Fold 1 is held-out as an Estimation set

With Conf, Apply on
2 a M, 3 0.8

3 a Mg 2 0.6

Mean, = 0.7
2 b M,, 3 0.6
3 b M., 2 0.6

Mean, = 0.6
Select a
2,3 a M, 1 0.8

Final Estimate: mean of 0.9 +0.7 + 0.8 = 0.8



How many models frained<

C: number of configurations
K: number of folds

o To produce the final model CVT is called with K folds

o C configurations x K folds for estimating best configuration

o +1to train on the full dataset

o =CxK+1
o To estimate its performance

o Run CVT with K-1 folds, K times

o =(Cx(K-1)+1)xK
o Total number of models trained=C xK?+ K + 1
o Expensive



Nested-Cross Validation

o Fold loop within CVT: inner CV loop
o Fold loop within CV: outer CV loop
o The standard protocol for small-sample, omics dato

o Want more accurate estimation, run Repeated-CV
instead of CV

o Want even more accurate estimation, run Repeated-
CVT instead of CVT

o Computationally expensive O(K2) models per
configuration; Can we do better?



Let’'s Focus on Selection

Learning Method f
CV(f, D)
Data D = {X,y} : \ | dRetrair.1 onball
— CV(f, D) Select-Best * data using best > Model M

/ configuration
CV(f,, D)

o Our selection strategy creates the estimation problem




Let’'s Focus on Selection

Data D

™\

Learning Method f
Test set prediction matrixII
CV(f, D) [~
ERE | 20 I Retrain on all
CV(f, D) > 1 yes | no | .. | no | data using best
2 no | yes | .. | no [ Select-Best | configuration
CV(f, D) 224 no | yes | .. | ves ‘ \
/ l )
Choose the column Output best
[T;; = prediction of model trained with with the lowest loss y Eu =
configuration j on sample j, when i was contiguration N
in the test set

Model M



Performance estimation bias
correction

Test set prediction matrix

Sample f, f, f,
1 yes no no

2 no yes no
224 no yes yes

No need to train new models, computationally efficient

Can safely replace nested Cross-Validation; Next standard?



Performance estimation bias
correction

N ’

o 4o . IQ\
Test set predlctlon matrix
Sample f, f, f,
1 yes no no
2 no yes no
224 no yes yes

No need to train new models, computationally efficient

Can safely replace nested Cross-Validation; Next standard?



Performance estimation bias
correction

<! , Solution:

dicti , -,Q: Estimate the performance of the configuration
Test set prediction matrix selection procedure:

Sample f, f, .. f o Use bootstrapping or CV on the test prediction
1 yes no | .. | no matrix!
2 no yes no

o Select best configuration on a subset of the
martrix

224 no yes yes

o  Estimate performance of the selected
configuration on the held-out set

No need to train new models, computationally efficient

Can safely replace nested Cross-Validation; Next standard?



Performance estimation bias
correction

Test set prediction matrix

Sample f, f, f

1 yes no no

2 no yes no

224 no yes yes
Bootstrap Bias Corrected CV |. Tsamardinos, E. Greasidou, G. Borboudakis, “Bootstrapping the Out-of-sample Predictions for

Efficient and Accurate Cross-Validation”, Machine Learning 2018



Performance estimation bias
correction

1 yes no no
Test set prediction matrix —> 1 yes | no no
Sample f, f, f
224 no yes yes
1 yes no no
2 no yes NO ===
224 no yes yes 2 no | yes yes
= 3 ves | no no
220 no yes yes
Bootstrap Bias Corrected CV |. Tsamardinos, E. Greasidou, G. Borboudakis, “Bootstrapping the Out-of-sample Predictions for

Efficient and Accurate Cross-Validation”, Machine Learning 2018



Performance estimation bias
correction

Select best Configuration, i.e. C;

1 yes no no
Test set prediction matrix —> 1 yes | no no
Sample f, f, f
224 no yes yes
1 yes no no —
2 no yes NO ===
224 no yes yes 2 no | yes yes
= 3 ves | no no
220 no yes yes
Bootstrap Bias Corrected CV |. Tsamardinos, E. Greasidou, G. Borboudakis, “Bootstrapping the Out-of-sample Predictions for

Efficient and Accurate Cross-Validation”, Machine Learning 2018



Performance estimation bias
correction

Select best Configuration, i.e. C;

Sample f, f, .. f,
sy no [ .. [ no

1 ye
Test set prediction matrix —> 1 yes | no | .. | no
Sample f, f, f

224 no yes yes

1 yes no no —

2 no yes | .. no f= Measure Performance P, of C;

Sample  f; £, .. f
224 no yes yes 2 no | yes yes
= 3 yes | no no
220 no yes yes

IE—

Bootstrap Bias Corrected CV |. Tsamardinos, E. Greasidou, G. Borboudakis, “Bootstrapping the Out-of-sample Predictions for
Efficient and Accurate Cross-Validation”, Machine Learning 2018



Performance estimation bias
correction

Select best Configuration, i.e. C;

Sample f, f, .. f,
sy no [ .. [ no

1 ye
Test set prediction matrix —> 1 ves | no | .. | no
Sample f, f, f
224 no yes yes
1 yes no no —
2 no ves | .. no == Measure Performance P, of C;
224 no yes yes 2 no | yes yes
= 3 ves | no no
220 no yes yes
B=1
Bootstrap Bias Corrected CV |. Tsamardinos, E. Greasidou, G. Borboudakis, “Bootstrapping the Out-of-sample Predictions for

Efficient and Accurate Cross-Validation”, Machine Learning 2018



Performance estimation bias
correction

Select best Configuration, i.e. C; Select best Configuration, i.e. C,
Sample f, f, .. f, Sample f, f, .. f,
1 yes no no 2 no yes yes
Test set prediction matrix =P 1 yes | no no | * 2 no | yes | .. | yes
Sample f, f, f
224 no yes yes 210 no yes yes
1 yes no no —
2 no yes no = Measure Performance P, of C; Measure Performance P, of C,
Sample  f; f, .. f Sample  f; f, ... f,
224 no yes yes 2 no yes yes 1 yes no no
= 3 yes | no no | e 3 yes | no no
220 no yes yes 220 no yes yes
IEE— ]
B=1 B=1000
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Performance estimation bias
correction

Select best Configuration, i.e. C; Select best Configuration, i.e. C,
Sample f, f, .. f, Sample f, f, .. f,
1 yes no no 2 no yes yes
Test set prediction matrix =P 1 yes | no no | * 2 no | yes | .. | yes
Sample f, f, f
224 no yes yes 210 no yes yes
1 yes no no — ZB p
=111
2 no yes no = Measure Performance P, of C; Measure Performance P, of C, Performance = =
Sample  f; f, .. f Sample  f; f, ... f,
224 no yes yes 2 no yes yes 1 yes no no
= 3 ves | no no | = 3 ves | no no
220 no yes yes 220 no yes yes
IEE— ]
B=1 B=1000
Bootstrap Bias Corrected CV |. Tsamardinos, E. Greasidou, G. Borboudakis, “Bootstrapping the Out-of-sample Predictions for

Efficient and Accurate Cross-Validation”, Machine Learning 2018



Performance estimation bias
correction

Select best Configuration, i.e. C; Select best Configuration, i.e. C,
® 1 2 n P 1 2 n to provide confidence
1 yes no no 2 no yes yes intervals!
Test set prediction matrix —> 1 yes | no [ .. [ no | * 2 no [ yes | .. | ves
Sample f, f, f
224 no yes yes 210 no yes yes
1 yes no no — ZB p
=111
2 no yes no = Measure Performance P, of C; Measure Performance P, of C, Performance = =
Sample  f; f, .. f Sample  f; f, ... f,
224 no yes yes 2 no yes yes 1 yes no no
-> 3 ves | no | .. | no | - 3 ves | no | .. | no Performance
measured on
220 no | ves | .. | vyes 220 no | yes | .. | vyes new samples
IEE— ]
each time
B=1 B=1000

|. Tsamardinos, E. Greasidou, G. Borboudakis, “Bootstrapping the Out-of-sample Predictions for
Efficient and Accurate Cross-Validation”, Machine Learning 2018

Bootstrap Bias Corrected CV
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Algorithm 5 BBC-CV(f, D = {Fi,..., Fg}, ®): Cross-Validation with Tuning, Bias
removal using the BBC method

Input: Learning method f, Data matrix D = {({xj,y i}}j:;l partitioned into approximately equally-sized

folds F;, set of configurations &
Output: Model M, Performance estimation L g gc. 95% confidence interval [Ib, ub]

1: // Notice: the final Model is the same as in CVT

2: (M, Lcyr, 1) < CVT(f, D, ®)

: for b =1to B do

nb « sample with replacement N rows of I

o\l «— g1 \ b get samples in /1 and not in b

/I Apply the configuration selection method on the bootstrapped out-of-sample predictions
Jj <« ces(IT?, yb)

// Estimate the error of the selected configuration on predictions not selected by this bootstrap
Ly < L\, TG, V)

10: end for

11: Lggc = % >p—q Lb

12: // Compute 95% confidence interval; Ly denotes the k-th value of Lj’s in ascending order

13: [lb, ub] = [L(0.025.B)> L(0.975.B)]
14: Return (M, Lppc, [lb, ub))

WA W




Cross Validation bias correction

02 : Cross Validation - 03 Tibshirani and Tibshirani |+
025 With Tuning - CVT 025} Protocol - TT
. 0.2 s 02
o o . .
2 " 20" Average estimated bias (over 20 sub-datasets
% 0.1 g 0.1 . .
e sylvine s ] 5 ] for each original dataset) of the CVT, TT, NCV
—:—zhilitppine SN S ——— === S S S - and BBC-CV estimates of performance.
- = dexter @© @©
—— madeline -0.05 | 3 -0.05F N : =
— < —gisette oI 1 o1t -
—-%-—christine _0'1520 42) GE) aij 1(;0 500 _0'1520 A[IJ GE) BE) 1cl)o 500 . . . . . .
—e—madelon sample size sample size o CVT is optimistically biased for sample size
.
—-%—ji;:riine 02 | Nested Cross | °sr|  Bootstrap Bias Corrected [ N < 100.
02 Validation - NCV | ] °2r Cross-Validation — BBC-CV | T o NCV and BBC-CV, both have low bias
02r 8 02t i
S o g | though results vary with dataset.

011 B 011

015 1 L 1 L 015 1 L L .
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Multiple Repeats with Different Fold

Partitions
. _ BBC-CVX,N=20,95%Cls __ BBC-CVX,N=100,95% Cls
£ OD.Q T T T T T T T T OD.Q T T T T T T T T
o Differen _ el 13
splits fo folds, give R SV s e s B
different estfimates L, S S S S S s b e -0
ﬁl]ﬁl;\& [ | | b ﬁll
o Repeat the cross 3| 2.
validation sor g
procedure WITh - 4#rfjepeeats ????? # repeats
different splits
o Reduces confidence
infervals

o Improves selection
of best configuration



NCV vs Repeated BBC

o Is 1t better to use NCV with 10
folds or BBC with 10 Repeatse

o same number of frained models

o BBC-CVI'9returns on average

better models for small sample
sizes

relative average true performance (AUC)

0.92 ! ! L
20 40 60 80 100 500

sample size

—&—sylvine —¥— philippine — & —dexter —&— madeline

— < —gisette —-*-—christine —&— madelon —¥—gina —#-—jasmine



BBC-CV

o Pros: Generally applicable to any type of data, any
type of outcome, any performance metric

o Pros: Reduces complexity from O(K?%) models per
configuration to O(K)

o Pros: Generation of Confidence Intervals comes for free
o Pros: better than NCV for the same budget

o Cons: Requires a predetermined set of configurations;
does not work with dynamic search strategies
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BBCD: BBC with Dropping

configurations?

o Do we really need to train models for all folds for all
just a few folds?

o Can't we detect the inferior configurations with after
o And stop fraining further models<e




BBCD: BBC with Dropping

Test set prediction matrix

Sample f, f, f

After first CV iteration:

Samples of | 1 ves no | .. | no No Training data all folds but F,
fold Fl 2 YnO ies :IO LES TeS-I- dO-I-O Fl
es es o) o) .
 Models produced with
4 (empty) | (empty) | .. (empty) No

Samples of |—— configuration f; seem inferior

Yes

fold P2 v | * Perform a stafistical test to
determine inferiority
camples of + If true, drop f; from subsequent

224 Yes CV iterations




BBCD

o Selects equally good

BBCD-CV/CVT, sample size = 500

models when samples
size > 500 o |
o Speed up of 5-6 times for _ . - i T
10-fold CV s oL H
o Total speed up vs. 10- . i 1=
fold NCV about 40-50 3| T | T |
- 2 4 = | =

datasets



Practical advise for Tune-n-Estimate

o For samples sizes < 250 per class use BBC with multiple
repeats

o For sample 250 < sizes < 2000 use BBCD
o Forlarger sample sizes use hold-out
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Preference Dimensions

o Different analyses, different needs
o Not everybody cares only for predictive performance!

o What are the different criteria for a successful analysis?




User Preferences Trade-Offs

o Predictive performance
o Important for models to put in operational use
o E.g., models for translational medicine

o Use maximum number of folds, several repeats,
more algorithms, more hyper-parameter values



User Preferences Trade-Offs

o Knowledge Discovery (in the form of Feature
Selection)

o Important when trying to get intuition into the mechanisms
(causality) of the data generating mechanism

o Or, when frying to reduce cost of measuring the features (E.Q.,
models in molecular biology)

o Try configurations with feature selection only

o Try feature selection hyper-parameters that force the selection
of few features



User Preferences Trade-Offs

o Interpretability

o Important when gaining intuition how the
features determine the outcome (E.g.,
medicine)

o Enforce both feature selection and humanly-
INntferpretable models

o Generalized linear models
o Decision Trees



User Preferences Trade-Offs

o Speed of analysis

o Important for initial estimation of the
InNformation-value

o Use fewer algorithms, fewer hyper-parameter
values, less expensive algorithms



User Preferences Trade-Offs

o Speed of Model Execution

o Important for real-fime predictions (E.g., text
classification models on a popular web-server)

o Enforce only fast-executing models, e.qg,.
generalized linear models, decision trees



Trade-off estimation

o When restricting search 1o

o only interpretable models
o only with feature selection
o only with fast-executing models

o Compare against the unrestricted search results o
estimate the performance loss
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Summary

o Tuning is very important for predictive performance

o Tuning (trying multiple configurations)leads to overestimations; if
requires special estimation protocols

o Beware of “choosing the best of” decisions in generall Lead to
overestimation!

o NCV is the current standard: it cross-validates a learner that CVs
configurations and chooses the best

o BBC booftstraps the configuration strategy
o BBCD drops early inferior configurations
o BBC and BBCD a faster, better proposed alternative

o Different analysis preferences require adjusting the pipeline
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Checkpoint: You should know

v The concepts of hyper-parameters and configurations
v The Golden Rule of estimation

v Common pitfalls of analysis:
v Not CVing all steps of the analysis

v Reporting the best of CVed performances
v Grid Search in the space of hyper-parameters
v NCV and BBC

v Should be enough to construct a basic, but quite
general and correct automated pipeline
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