
Automated Machine Learning and 
Knowledge Discovery

I O A N N IS  T S A M A RDIN O S

P R O F E SSO R,  C S D ,  U N I VER SITY  O F  C R E T E

G N O S IS  D A T A  A N A L Y SIS ,  C O- F O U N DER

V I N CEN Z O  L A G A N I

I L I A  S T A T E U N I V ERSIT Y

G N O S IS  D A T A  A N A L Y SIS ,  C O- F O U N DER

Cite as: Ioannis Tsamardinos, Vincenzo Lagani, Automated Machine Learning and Knowledge Discovery, 
ECCB 2018 Tutorial



Outline

o Part I (45’)

o Introduction to the problem and 
the tutorial

o Estimation of performance 
(single configuration)

o Part II (45')

o Estimation of performance 
(multiple configurations)

o Incorporating User Preferences

o Part III (45’)

o Feature Selection and Knowledge 
Discovery

o Hyper -parameter search strategies

o Part IV (45’)

o Post-analysis interpretation and 
visualizations

o AI-assisted Auto -ML (algorithm 
selection, pipeline synthesis, meta -
learning, feature learning)

o Putting all together ðThe Just Add 
Data Bio platform

o Tools for Auto -ML



Tune and Estimate



Choices, choices, choices

o Multiple algorithms available and applicable for all 
steps of the analysis (feature selection, classification, 
etc.)

o Each algorithm has a set of òtuning knobsó

o Optimize choice of combinations of algorithms and 
their òtuning knobsó



Hyper -Parameters vs. Parameters

o A parameter of a model (e.g., linear regression) is a quantity 
directly estimated from the data

o In linear regression y = w1 x1+ é + wn xn + b, wõs and b are 
parameters, estimated from the data

o A hyper -parameter of an algorithm is a quantity not 
estimated by the data but set by the user

o Determines the sensitivity of an algorithm to detecting patterns

o A hyper -parameter may, of course, be estimated indirectly by 
CV (then it becomes a parameter in the complete procedure)



Examples of Hyper -Parameters

o K-Nearest Neighbors : K, distance function

o Decision Trees : MaxPChance (level of pruning)

o Support Vector Machines : Cost C, kernel K (each 
one has its own hyper -parameters)

o Univariate Feature Selection : p -value threshold

o Lasso: regularization parameter lambda

o Gaussian processes can have dozens of hyper -
parameters [C. E. Rasmussen & C. K. I. Williams. "Gaussian Processes for Machine 

Learning", the MIT Press, 2006]
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Configurations
o Which algorithm to choose can also be seen as a 

hyper -parameter!

o Which data representation to use is a hyper -parameter
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From Hyper -Parameters to
Configurations
o Which algorithm to choose can also be seen as a 

hyper -parameter!

o Which data representation to use is a hyper -parameter

o Point: all our choices can be represented with a 
vector a of hyper -parameter values!



More algorithms vs. better tuning

o Personal Experience:

o Tuning of flexible, “good” algorithms is more important 
than trying a plethora of algorithms with default values

o Personal choices : SVMs, Random Forests, Gradient 
Boosting Trees (can represent all functions), ensemble 
methods

o Feature construction, data representation, 
data transformations, more important than including more 
learning algorithms



Learn
Preprocessing

Learn
Transformation

Learn
Imputation

Learn
Feature 

Selection

Learn
Prediction 

Model

Hyper-Parameterized Learning Method f

Data D = {X,y}

Model M

Hyper-Parameter 
values a



Hyper -Parameters and Configurations

o Configuration : an instantiation of a learning 
method f with specific hyper -parameter values.

o A configuration coincides with a non -
hyperparameterized learning method. 

o A configuration completely defines which 
computations to perform all the way from data to model.



Feature 
selection

Classifier

Configuration Hyper-parameter 1 Hyper-parameter 2 Χ. Hyper-parameter m

1 SES 0.05 Χ SVM

2 Lasso 1 Χ Random Forests

Χ Χ Χ Χ Χ

n Χ Χ Χ Χ



Tuning vs Model Selection

o Model selection (statistics):

o produce several models, on all the data, select the òbestó

o Typically, the selection is manual based on some criteria (fitting 
+ simplicity, distribution of residuals, etc.)

o Tuning [Tsamardinos et al. Machine Learning, 2018]

o Tuning = configuration selection

o Only one model is produced on all the data (no model selection)

o The model is produced by the òbestó configuration

o òBestó is found by tuning the hyper-parameter
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o A priori decide the values to try for 
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o Try all combinations (full -factorial)

o Called Grid Search

o Try values {0.01, 0.05, 0.1} for hp a

o Try values {1, 2, 3} for hp b

o Static hyper -parameter search 
strategies predetermine the 
configurations to try
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Example of Tune -n-Estimate 
(the wrong way)

o Construct all models from each configuration fi , i=1, é, 100

o Select Best

o Report its estimated performance

for each configuration fi

àPerfi , modelið= Hold-Out(D, fi)

end for

j = argmax Perfi

return àPerfi , modelið



Construct all Models, Select Best

Algorithm Parameter Performance(Loss)

K-NN K=1 0.81

K=2 0.84

K=5 0.88

DT MaxPChance=0.01 0.83

MaxPChance=0.05 0.9

MaxPChance=0.1 0.81

SB l = 0 0.75

l=1 0.83

TestTrain
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Algorithm Parameter Performance(Loss)

K-NN K=1 0.81

K=2 0.84

K=5 0.88

DT MaxPChance=0.01 0.83

MaxPChance=0.05 0.9

MaxPChance=0.1 0.81

SB l = 0 0.75

l=1 0.83

Construct all Models, Select Best

TestTrain

Selected model

Returned Estimate
(WRONG WAY)



Construct all Models, Select Best

for each configuration fi

àPerfi , modelið= Hold-Out2(D, fi)

end for

j = argmax Perfi

return àPerfi , modelið



Construct all Models, Select Best

for each configuration fi

àPerfi , modelið= Hold-Out2(D, fi)

end for

j = argmax Perfi

return àPerfi , modelið

It peeks in the test 
cases to select the 

final model: violation
of Golden Rule



Extreme Distributions: 1 Model

Alg Parameter Loss

K-NN K=1

Train Test

Assume: Equal true accuracies 85%
Mean = 0.85
Std = sqrt(NÖpÖ(1-p)) / N = 0.0505



Extreme Distributions: 8 Models

Alg Parameter Loss

K-NN K=1

K=2

K=5

DT MaxPChance=0.01

MaxPChance=0.05

MaxPChance=0.1

SB l = 0

l=1

Train Test

Assume: Equal true accuracies 85%Mean,
Std follow an ExtremeDistribution
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Performance Estimation Bias

o Let m1,é, mn be the sample performances of each configuration

o Let m1, é, mn be the true performances of each configuration

o For unbiased estimation we have m1 = E(m1), é, mn = E(mn)

o We return as our estimate the best sample performance max(m1,é, 
mn)

o On average we return E(max(m1,é, mn))

o True best performance is max(m1, é, mn) = max(E(m1), é, E(mn))

o Our estimate on average E(max(m1,é, mn)) Ó max(E(m1), é, E(mn)) true 
best, by Jensenõs inequality
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Folds C1 C2 Χ. Cn

1 0.9 0.8 Χ 0.7

2 0.8 0.7 Χ 0.6

Χ Χ Χ Χ Χ

K Χ Χ Χ Χ

Mean 0.9 0.8 Χ 0.7

Test set prediction matrix

Which model out 
of all trained 

should we use?

Is its expected 
performance the 
Cross-Validated 

one?

No! The Cross-Validated 
accuracy of the best 

configuration is 
optimistic!

(multiple induction 
problem, Jensen 1992)

Return model trained 
on all data using best 
configuration. Should 
be best on average



Conservatism vs. Optimism

o Each CV single -configuration estimates are conservative : 
they are based on training with fewer samples than the final 
model

o CV multiple -configuration estimates are optimistic:

o Winner depends on:

o Sample size : smaller sample size optimism wins

o Number of configurations tried : more configurations, optimism 
wins

o “Correlation” of configuration: the more independent, the larger 
the optimism

o Distribution of true performances of configurations : the less 
variant, the more optimism



Choose Configuration AND Estimate 
Performance
o How?
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Choose Model AND Estimate 
Performance

o Train: used to train model

o Tune: used to choose best configuration

o Estimate: used to estimate performance

o Called Train -Validation -Test in the literature

Train Tune Estimate



Simple Train-Tune-Estimate
HoldOut

STTE-Hold-Out (Data D, learning methodf, vectors of hpsa)

Randomly partition row indexes to TrainI, TuneI, EstI

For all hp ai in a //Try all configurations

Create a new configuration fi = f(Ö, ai)

Mi = f i ( D (TrainI)), Esti = l(y(TuneI), Mi(X(TuneI))

End For

i* = argmax Esti // Best configuration based on Tune set

Returned Model: Mi*

Returned Estimation: l(y(EstI), Mi* (X(EstI))

o fi = f(Ö, ai): f is called a closure ; makes
programming really easy

o Trains C models, C the number of configurations

o Correctly follows the Golden Rule, correct estimation

o Does not train on all data, as it should

o Directly estimates the loss of a model, not of the 
learning function

o Pros: computationally efficient, simple

o Cons : loses data to both Tune and Estimate

o Use when sample size is really large

Train Tune Estimate



Consider Tuning part of learning

CV(f1, D)

Learning Method f

Data D = {X,y}

Model MCV(f2,D)

CV(fn, D)

Select-Best
Retrain on all 

data using best 
configuration



Cross-Validation with Tuning



Nested Cross -Validation

o Cross-Validate a learning method that returns a 
single model, but performs tuning internally

o Cross-Validate CVT !



NCV Trace: Model Production

o Configurations a, b, Folds 1, 2, 3
Train On With Conf. Produce Apply on Accuracy

1, 2 a M1 3 0.7

1, 3 a M2 2 0.8

2, 3 a M3 1 0.6

Meana = 0.7

1, 2 b M4 3 0.6

1, 3 b M5 2 0.7

2, 3 b M6 1 0.5

Meanb = 0.6

Select a

1, 2, 3 a M7 N/A

Return model M7



NCV Trace: Estimation

o Fold 3 is held -out as an Estimation set

Train On With Conf. Produce Apply on Accuracy

1 a M8 2 0.7

2 a M9 1 0.8

Meana = 0.75

1 b M10 2 0.6

2 b M11 1 0.7

Meana = 0.65

Select a

1, 2 a M12 3 0.9



NCV Trace: Estimation

o Fold 2 is held -out as an Estimation set

Train On With Conf. Produce Apply on Accuracy

1 a M13 3 0.6

3 a M14 1 0.7

Meana = 0.65

1 b M15 3 0.7

3 b M16 1 0.8

Meana = 0.75

Select b

1, 3 b M17 2 0.7



NCV Trace: Estimation

o Fold 1 is held -out as an Estimation set

Train On With Conf. Produce Apply on Accuracy

2 a M18 3 0.8

3 a M19 2 0.6

Meana = 0.7

2 b M20 3 0.6

3 b M21 2 0.6

Meana = 0.6

Select a

2, 3 a M22 1 0.8

Final Estimate: mean of 0.9 + 0.7 + 0.8 = 0.8



How many models trained?
C: number of configurations

K: number of folds

o To produce the final model CVT is called with K folds

o C configurations ĮK folds for estimating best configuration

o +1 to train on the full dataset

o = C ĬK + 1

o To estimate its performance

o Run CVT with K-1 folds, K times

o = (C Ĭ(K-1) + 1) ĬK

o Total number of models trained = C ĬK 2 + K + 1

o Expensive



Nested -Cross Validation

o Fold loop within CVT: inner CV loop

o Fold loop within CV: outer CV loop

o The standard protocol for small -sample, omics data

o Want more accurate estimation, run Repeated -CV
instead of CV

o Want even more accurate estimation, run Repeated -
CVT instead of CVT

o Computationally expensive O(K 2) models per 
configuration; Can we do better ?



Letõs Focus on Selection

o Our selection strategy creates the estimation problem

CV(f1, D)

Learning Method f

Data D = {X,y}

Model MCV(f2,D)

CV(fn, D)

Select-Best
Retrain on all 

data using best 
configuration



Letõs Focus on Selection

CV(f1, D)

Learning Method f

Data D 

Model M

CV(f2,D)

CV(fn, D)

Select-Best

Retrain on all 
data using best 
configuration

Test set prediction matrixP

Sample f1 f2 Χ. fn

1 yes no Χ no

2 no yes Χ no

Χ Χ Χ Χ Χ

224 no yes Χ yes

Pij = prediction of model trained with 
configuration j on sample i, when i was
in the test set

Choose the column 
with the lowest loss

Output best 
configuration



Performance estimation bias 
correction

Sample f1 f2 Χ. fn

1 yes no Χ no

2 no yes Χ no

Χ Χ Χ Χ Χ

224 no yes Χ yes

Test set prediction matrix
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Can safely replace nested Cross -Validation; Next standard ?
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Performance estimation bias 
correction

Sample f1 f2 Χ. fn

1 yes no Χ no

2 no yes Χ no

Χ Χ Χ Χ Χ

224 no yes Χ yes

Test set prediction matrix

Solution: 

Estimate the performance of the configuration 

selection procedure :

o Use bootstrapping or CV on the test prediction 
matrix!

o Select best configuration on a subset of the 

matrix

o Estimate performance of the selected 
configuration on the held -out set

No need to train new models, computationally efficient

Can safely replace nested Cross -Validation; Next standard ?



Performance estimation bias 
correction

Sample f1 f2 Χ. fn

1 yes no Χ no

2 no yes Χ no

Χ Χ Χ Χ Χ

224 no yes Χ yes

Test set prediction matrix

Bootstrap Bias Corrected CV ɹ. Tsamardinos, ɳ. GreasidouΣ DΦ .ƻǊōƻǳŘŀƪƛǎΣ ά.ƻƻǘǎǘǊŀǇǇƛƴƎ ǘƘŜ hǳǘ-of-sample Predictions for 
Efficient and Accurate Cross-±ŀƭƛŘŀǘƛƻƴέΣ Machine Learning 2018



Performance estimation bias 
correction

Sample f1 f2 Χ. fn

1 yes no Χ no
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Same procedure used 
to provide confidence 
intervals!

Performance 
measured on 
new samples 
each time
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Generation of CIs

AUC

Average, bootstrap 
corrected AUC estimate

95% confidence intervals





Cross Validation bias correction

o CVTis optimisticallybiasedfor samplesize
NҖ100.

o NCV and BBC-CV, both have low bias
thoughresultsvarywith dataset.

Cross Validation 
With Tuning - CVT

Nested Cross 
Validation - NCV

Tibshiraniand Tibshirani
Protocol - TT

Bootstrap Bias Corrected 
Cross-Validation ςBBC-CV

Averageestimatedbias (over 20 sub-datasets
for eachoriginaldataset)of the CVT,TT,NCV
andBBC-CVestimatesof performance.



Multiple Repeats with Different Fold 
Partitions

o Different 
splits to folds, give 
different estimates

o Repeat the cross 
validation 
procedure with 
different splits

o Reduces confidence 
intervals

o Improves selection 
of best configuration



NCV vs Repeated BBC

o Is it better to use NCV with 10 
folds or BBC with 10 Repeats?

o same number of trained models

o BBC-CV 10 returns on average 
better models for small sample 
sizes



BBC-CV

o Pros: Generally applicable to any type of data, any 
type of outcome, any performance metric

o Pros: Reduces complexity from O(K 2) models per 
configuration to O(K)

o Pros: Generation of Confidence Intervals comes for free

o Pros: better than NCV for the same budget

o Cons : Requires a predetermined set of configurations; 
does not work with dynamic search strategies 



BBCD: BBC with Dropping

o Do we really need to train models for all folds for all 
configurations?

o Canõt we detect the inferior configurations with after 
just a few folds?

o And stop training further models?



BBCD: BBC with Dropping

Sample f1 f2 Χ. fn

1 yes no Χ no

2 no yes Χ no

3 Yes Yes Χ No

4 (empty) (empty) Χ (empty)

...

224

Test set prediction matrix

Samples of 
fold F1

Samples of 
fold F2

Samples of 
fold F3

y

No

Yes

No

No

Yes

No

Yes

ÅAfter first CV iteration:
Training data all folds but F1

Test data F1

ÅModels produced with 
configuration f1 seem inferior

ÅPerform a statistical test to 

determine inferiority
Å If true, drop f1 from subsequent 

CV iterations



BBCD

o Selects equally good 
models when samples 
size > 500

o Speed up of 5 -6 times for 
10-fold CV

o Total speed up vs. 10 -
fold NCV about 40 -50



Practical advise for Tune -n-Estimate

o For samples sizes < 250 per class use BBC with multiple 
repeats

o For sample 250 < sizes < 2000 use BBCD

o For larger sample sizes use hold -out



User Preferences



Preference Dimensions



Preference Dimensions

o Different analyses, different needs



Preference Dimensions

o Different analyses, different needs

o Not everybody cares only for predictive performance!



Preference Dimensions

o Different analyses, different needs

o Not everybody cares only for predictive performance!

o What are the different criteria for a successful analysis?



User Preferences Trade -Offs

o Predictive performance

o Important for models to put in operational use

o E.g., models for translational medicine

o Use maximum number of folds, several repeats, 
more algorithms, more hyper -parameter values



User Preferences Trade -Offs

o Knowledge Discovery (in the form of Feature 
Selection)

o Important when trying to get intuition into the mechanisms 
(causality) of the data generating mechanism

o Or, when trying to reduce cost of measuring the features (E.g., 
models in molecular biology)

o Try configurations with feature selection only

o Try feature selection hyper -parameters that force the selection 
of few features



User Preferences Trade -Offs

o Interpretability

o Important when gaining intuition how the 
features determine the outcome (E.g., 
medicine)

o Enforce both feature selection and humanly -
interpretable models

o Generalized linear models

o Decision Trees



User Preferences Trade -Offs

o Speed of analysis

o Important for initial estimation of the 
information -value

o Use fewer algorithms, fewer hyper -parameter 
values, less expensive algorithms



User Preferences Trade -Offs

o Speed of Model Execution

o Important for real -time predictions (E.g., text 
classification models on a popular web -server)

o Enforce only fast -executing models, e.g ,. 
generalized linear models, decision trees



Trade-off estimation

o When restricting search to 

o only interpretable models

o only with feature selection

o only with fast -executing models

o Compare against the unrestricted search results to 
estimate the performance loss
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Summary

o Tuning is very important for predictive performance

o Tuning (trying multiple configurations)leads to overestimations ; it 
requires special estimation protocols

o Beware of “choosing the best of” decisions in general! Lead to 
overestimation!

o NCV is the current standard : it cross-validates a learner that CVs 
configurations and chooses the best

o BBC bootstraps the configuration strategy

o BBCD drops early inferior configurations

o BBC and BBCD a faster, better proposed alternative

o Different analysis preferences require adjusting the pipeline
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Checkpoint: You should know

VThe concepts of hyper -parameters and configurations

VThe Golden Rule of estimation

VCommon pitfalls of analysis:

VNot CVing all steps of the analysis

VReporting the best of CVed performances

VGrid Search in the space of hyper -parameters

VNCV and BBC

VShould be enough to construct a basic, but quite 
general and correct automated pipeline
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