Cite as: Ioannis Tsamardinos, Vincenzo Lagani, Automated Machine Learning and Knowledge Discovery, ECCB 2018 Tutorial

Automated Machine Learning and Knowledge Discovery

IOANNIS TSAMARDINOS

PROFESSOR, CSD, UNIVERSITY OF CRETE

GNOSIS DATA ANALYSIS, CO-FOUNDER

VINCENZO LAGANI

ILIA STATE UNIVERSITY

GNOSIS DATA ANALYSIS, CO-FOUNDER

Conflict of Interest Declaration

 Some of the research and algorithmic results are commercially exploited by Gnosis Data Analysis PC

Slides, Graphics, Visuals

- o Kleanthi Lakiotaki
- o Kleio-Maria Verrou

Outline

o Part I (45')

- Introduction to the problem and the tutorial
- Estimation of performance (single configuration)

• Part II (45')

- Estimation of performance (multiple configurations)
- Incorporating User Preferences

• Part III (45')

- Feature Selection and Knowledge Discovery
- Hyper-parameter search strategies

• Part IV (45')

- Post-analysis interpretation and visualizations
- Al-assisted Auto-ML (algorithm selection, pipeline synthesis, meta-learning, feature learning)
- Putting all together The Just Add Data Bio platform
- o Tools for Auto-ML

Outline

- Part I (45')
 - Introduction to the problem and the tutorial
 - Estimation of performance (single configuration)
- Part II (45')
 - Estimation of performance (multiple configurations)
 - Incorporating User Preferences

• Part III (45')

- Feature Selection and Knowledge Discovery
- Hyper-parameter search strategies

• Part IV (45')

- Post-analysis interpretation and visualizations
- Al-assisted Auto-ML (algorithm selection, pipeline synthesis, meta-learning, feature learning)
- Putting all together The Just Add Data Bio platform
- o Tools for Auto-ML

Introduction to AutoML Tutorial

What is Automated Machine Learning

- "Automated machine learning (AutoML) is the process of automating the end-to-end process of applying machine learning to real-world problems." Wikipedia
- o In this tutorial focus on:
 - Predictive and Diagnostic Modeling (Supervised learning)
 - Feature Selection (Knowledge Discovery, Biosignature Discovery)
 - o <u>No</u> Deep Learning
- Very hot area of research!

Input

Predictors / features									
ID	x ₁	х ₂	X ₃	x ₄		x _m	target		
1	26	0	0.3	0.06		2	yes		
2	52	1	2.3	0.1		2	no		
n	34	0	5.8	0.04		3	no		

Input

Predictors / features										
ID	x,	х ₂	х ₃	x ₄		x _m	target			
1	26	0	0.3	0.06		2	yes	ר		
2	52	1	2.3	0.1		2	no	nsta		
								ance		
n	34	0	5.8	0.04		3	no			

Input Predictors / features X_m X_4 target ID X. X₂ X. 2 0.3 0.06 26 0 1 ... yes instances 1 0.1 2.3 ... 2 2 52 no ••• ••• •••• ••• 5.8 0.04 0 3 n 34 ... no

Auto-ML System

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

• Selection of algorithms

- Performance estimation
- Hyper-parameter optimization
- Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- User interfaces
- o Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- o Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- User interfaces
- Meta-level learning, feature learning

- Selection of algorithms
- Performance estimation
- Hyper-parameter optimization
- o Feature Selection
- Generation of ML pipelines
- Detection of problems and pipeline execution monitoring
- Explanation, visualization, report writing
- o User interfaces
- Meta-level learning, feature learning

Just automate the analysis of all data and send us home

Goals

- o Improve your skills to write analysis scripts
 - o Understand the trade-offs among choices
 - o Avoid methodological errors and pitfalls
- o Learn how to perform feature selection
- Obtain an introduction to the field, its problems and tools
- Become a better analyst

Prerequisites

- o Basics of supervised machine learning
 - Modeling algorithms, feature selection
 - Types of outcomes (classification, regression, etc.)
 - Performance metrics (accuracy, AUC, mean squared error)
- Experience with supervised analysis and model building

Estimating Performance

SINGLE CONFIGURATION

The Predictive and Diagnostic Modeling Problem

 Given past examples of profiles and their actual outcome of interest, learn a predictive or diagnostic model for new, unseen, profiles

The Predictive and Diagnostic Modeling Problem

- Micro-array gene expressions
- Methylation of CpG cites
- Next Generation Sequencing mRNA peaks
- o SNP
- Copy-number variations
- Proteomics (mass spectroscopy, LC, etc.)
- Metabolomics
- Flow-cytometry
- Mass-cytometry
- Text of biomedical documents
- Clinical and Medical Quantities
- Environmental exposure factors
- Combinations of the above

 Given past examples of profiles and their actual outcome of interest, learn a predictive or diagnostic model for new, unseen, profiles

The Predictive and Diagnostic Modeling Problem

- Micro-array gene expressions
- Methylation of CpG cites
- Next Generation Sequencing mRNA peaks
- o SNP
- Copy-number variations
- Proteomics (mass spectroscopy, LC, etc.)
- Metabolomics
- Flow-cytometry
- Mass-cytometry
- Text of biomedical documents
- Clinical and Medical Quantities
- Environmental exposure factors
- Combinations of the above

- Disease status (diagnosis)
- Response to treatment
- Phenotype
- Time to death, relapse, complication
- Properties of a document

 Given past examples of profiles and their actual outcome of interest, learn a predictive or diagnostic model for new, unseen, profiles

Examples of Multivariate Predictive or Diagnostic Models

Rule-Based Model (Decision Tree)

If AFFX-BIoC-5 is Overexpressed and AFFX-BIoDn-5 is Underexpressed

Then

Classify as Metastatic

Else

Classify as Non-Metastatic

Linear Model:

Metastatic = sign ($0.5 \times AFFX$ -BloC-5 - $0.5 \times AFFX$ -BloDn-5 + 3)

Expression Values

		Genes / Probe Sets						Metastatic?
		AFFX-BloB-5_at	AFFX-BloB-M_at	AFFX-Blob-3_at	AFFX-BloC-5_at	 Affx-Bloc-3_at	AFFX-BloDn-5_at	
Sample	1	123.00	1.00	2,3	12.00	23.00	34.00	Yes
	2	323.00	23.00	4,54	2.00	21.00	65.00	No
								No
								No
	N	232.00	4,5	23.00	0,55	75.00	343.00	Yes

Examples of Multivariate Predictive or Diagnostic Models

Linear Model:

Metastatic = sign (0,5 × AFFX-BloC-5 – 0,5 × AFFX-BloDn-5 + 3)

Expression Values

		Genes / Probe Sets						Metastatic?
		AFFX-BloB-5_at	AFFX-BloB-M_at	AFFX-Blob-3_at	AFFX-BloC-5_at	 Affx-Bloc-3_at	AFFX-BloDn-5_at	
Sample	1	123.00	1.00	2,3	12.00	23.00	34.00	Yes
	2	323.00	23.00	4,54	2.00	21.00	65.00	No
								No
								No
	Ν	232.00	4,5	23.00	0,55	75.00	343.00	Yes

Examples of Multivariate Predictive or Diagnostic Models

4,5

23.00

0,55

75.00

343.00

Yes

232.00

Analysis Goals

Given a dataset $D = \{\langle \mathbf{x}_i, \mathbf{y}_i \rangle\}$ in the form of a 2D matrix, x_i the feature values, y_i the true outcome.

- 1. Produce an optimal (diagnostic or predictive) model for operational use on future samples
- 2. Estimate the performance of the model
- 3. Understand which quantities are predictive (feature selection)

We have available a **single** learning method $\underline{f(D)}$ that returns models M

y = M(x) returns predictions y for a sample x

Learn a model from samples, true outcomes in *D* (trainset)

- Learn a model from samples, true outcomes in *D* (trainset)
- 2. Install the model in its intended operational environment

- Learn a model from samples, true outcomes in *D* (trainset)
- 2. Install the model in its intended operational environment
- 3. Observe its operation for some time, for new cases D^\prime
Ideal Performance Estimation

- Learn a model from samples, true outcomes in *D* (trainset)
- 2. Install the model in its intended operational environment
- 3. Observe its operation for some time, for new cases D^\prime
- 4. Label with a gold-standard y' the cases in D' (test-set)

Ideal Performance Estimation

- Learn a model from samples, true outcomes in *D* (trainset)
- 2. Install the model in its intended operational environment
- 3. Observe its operation for some time, for new cases D^\prime
- 4. Label with a gold-standard y' the cases in D' (test-set)
- 5. Estimate the performance of the model on D'

Ideal Performance Estimation

- Learn a model from samples, true outcomes in *D* (trainset)
- 2. Install the model in its intended operational environment
- 3. Observe its operation for some time, for new cases \mathbf{D}'
- 4. Label with a gold-standard y' the cases in D' (test-set)
- 5. Estimate the performance of the model on D^\prime
- Pros and cons?

Simulating the Ideal

Golden Rule:

<u>Simulate: learn model from D, make</u> <u>operational, test on new samples D'</u>

 Main point: all decisions are made before model becomes operational and obtain D'

What can go wrong?

- Assumes the data distribution remains the same in the operational environment
- Example of violation:
 - Learning from case-control data (50-50% class distribution)
 - Then apply to general population (not 50-50% class distribution)
- Some performance metrics such as AUC, and Concordance-Index are invariant to class distribution changes; accuracy is not

Why not estimate on the training set?

FIGURE 7.1. Behavior of test sample and training sample error as the model complexity is varied. The light blue curves show the training error $\overline{\text{err}}$, while the light red curves show the conditional test error Err_T for 100 training sets of size 50 each, as the model complexity is increased. The solid curves show the expected test error Err and the expected training error $\text{E}[\overline{\text{err}}]$.

"Elements of Statistical Learning" book, Friedman, Tibshirani, Hastie

Out and In Sample Estimators

Out-of-sample estimation protocols

- Employ the predictive performance of the model on data <u>not seen</u> by the learning method; ignore errors in training data
- In-sample estimation protocols (not covered)
 - (Also) employ the predictive performance of the model on the training data
 - Typically, they also penalize for complexity
 - Often, they only bound the performance
 - o Bounds by Vapnik-Chervonenkis dimension theory

Simulating the Ideal

Train	Test
Samples /training instances	

o Randomly partition original data in terms of samples

- o Learn on Train
- o Estimate performance on Test
- o Called hold-out estimation

Notation

- Dataset is *D*, predictors in matrix *X*, outcome in *y*
- o Rows correspond to samples, columns to features
- X(indexset), y(indexset): selects only the **rows** of the indexset
- o l(y, p) the loss (error) between predictions in p and true outcomes in y

Hold-Out Protocol

Hold-Out (Data D)

Randomly partition row indexes to TrainIndex, TestIndex

M = f(D(TrainIndex))

Returned Model

M

Returned Estimation

l(*y*(*TestIndex*), *M*(*X*(*TestIndex*)))

 Pros: simple, computationally efficient, and correct

 Pros: appropriate when data are plenty

 Cons: some data are "lost" to estimation

Sample Size

Variance (uncertainty) of estimation

- Random sampling of the dataset from the whole population
- Random partition to train and test
- Size of test set

Variance (uncertainty) of estimation

- Random sampling of the dataset from the whole population
- Random partition to train and test
- Size of test set

Variance (uncertainty) of estimation

- Random sampling of the dataset from the whole population
- Random partition to train and test
- Size of test set

Variance (uncertainty) of estimation

- Random sampling of the dataset from the whole population
- Random partition to train and test
- Size of test set

Hold-Out-New Protocol

Hold-Out-New (Data D)

Randomly partition row indexes to TrainIndex, TestIndex

M = f(D(TrainIndex))

 $M_{all} = f(D)$

Returned Model

M_{all}

Returned Estimation

l(*y*(*TestIndex*), *M*_{*train*}(*X*(*TestIndex*)))

o Trains 2 models, instead of 1

 Estimation is conservative on average

Conservatism

Conservatism

- Random sampling of the dataset from the whole population
- Random partition to train and test
- Size of test set

100% training

Best model on average, no estimation possible

Variance (uncertainty) of estimation

Variance due to:

- Random sampling of the dataset from the whole population
- Random partition to train and test
- Size of test set

100% training Best model on average, no estimation possible

Repeat the process several times and average out

Hold-Out Protocol

Train Test

Repeated Hold-Out (Data D, nrepetitions)

For r = 1 to nrepetitions

Randomly partition row indexes to TrainIndex, TestIndex

M = f(D(TrainIndex))

 $l_r = l(y(TestIndex), Mtrain(X(TestIndex)))$

End For

 $M_{all}=f(D)$

Returned Model

 M_{all}

 $l = 1/nrepetitions \Sigma l_r$

- Trains nrepetitions+1 models
- Simulates the Golden Rule several times
- Reduces the uncertainty of estimation
- Still conservative estimation

Perspective Shift

- o Hold-Out:
 - o Returns model M_{Train}
 - $_{\rm O}$ Estimates its performance by applying the same $M_{\rm Train}$ to test data
- o Repeated Hold-Out and Hold-Out-New
 - o Returns model M_{all}
 - Applies other models M_{train} to estimate performance!
- What just happened?

Perspective Shift

- Hold-Out estimates the performance of the actual model M_{Train} to use operationally
- Repeated Hold-Out estimates the performance of the **learning method** *f* that will produce the final model
- Perspective shift: from estimating the performance of a specific model to estimating the performance of a learning method

K-Fold Cross Validation

Each repetition of **Repeated Hold-Out** produces a set of predictions of a model produced by *f* on a test set

Fact: the uncertainty of estimation is reduced the most, when these predictions are on independent samples

Random partitioning to Train-n-Test produces overlapping test sets ...

K-Fold Cross Validation

Each repetition of **Repeated Hold-Out** produces a set of predictions of a model produced by *f* on a test set

Fact: the uncertainty of estimation is reduced the most, when these predictions are on independent samples

Random partitioning to Train-n-Test produces overlapping test sets ...

When re-partitioning **force test sets to be disjoint** and cover all samples

K-Fold Cross-Validation = Repeated Hold-Out with K disjoint test sets covering the full dataset

Train Train Train Test Train		Train	Train	Train	Test	Train
------------------------------	--	-------	-------	-------	------	-------

Algorithm 1 CV $(f, D = \{F_1, \ldots, F_K\})$: Basic K-Fold Cross-Validation

Input: Learning method f, Data matrix $D = \{\langle x_j, y_j \rangle\}_{j=1}^N$ partitioned into about equally-sized folds F_i **Output**: Model M, Performance estimation L_{CV} , out-of-sample predictions Π on all folds

1: Define $D_{\setminus i} \leftarrow D \setminus F_i$ 2: // Obtain the indexes of each fold 3: $I_i \leftarrow indexes(F_i)$ 4: // Final Model trained by f on all available data 5: $M \leftarrow f(D)$ 6: // Performance estimation: learn from $D_{\setminus i}$, estimate on F_i 7: $L_{CV} \leftarrow \frac{1}{K} \sum_{i=1}^{K} l(y(I_i), f(F_i, D_{\setminus i}))$ 8: // Out-of-sample predictions are used by bias-correction methods 9: Collect out-of-sample predictions $\Pi = [f(F_1, D_{\setminus 1}); \cdots; f(F_K, D_{\setminus K})]$ 10: **Return** $\langle M, L_{CV}, \Pi \rangle$

K-Fold Cross Validation

- o Trains K+1 models
- As always: best model to use operationally is the one trained on all data!
- Still conservative: estimates the performance of the average model produced by f on training sets of size N = S (1 1 / K), S the total sample size
- Typical values for K = 3, 5, 10, or maximum S called
 Leave-One-Out Cross-Validation or LOO CV

Cross-Validation Variants

• Can I further reduce the variance of estimation?

- Yes! There is still variance due to the specific partitioning to folds.
- **Repeated Cross-Validation**: repeat CV with many partitions to folds and average. Use as many repetitions as possible! <u>It works, it's important for small sample sizes</u>.
- I only have time for K=3, but leaving out 33% of the data each time is too much!
 - Partition to K=10 (or whatever) and perform only the first 3 iterations of the Cross-Validation
 - Incomplete Cross-Validation

 Leave-One-Out CV should be the least conservative, less variant estimate, but ...

- Leave-One-Out CV should be the least conservative, less variant estimate, but ...
- There is evidence that LOO-CV is not always the best [Kohavi, R. 1995]

- Leave-One-Out CV should be the least conservative, less variant estimate, but ...
- There is evidence that LOO-CV is not always the best [Kohavi, R. 1995]
- Example: 25 positives and 25 negative samples. Classifier learns to predict the majority class in the training data. <u>Question</u>: what's the estimate of accuracy of LOO-CV?

- Leave-One-Out CV should be the least conservative, less variant estimate, but ...
- There is evidence that LOO-CV is not always the best [Kohavi, R. 1995]
- Example: 25 positives and 25 negative samples. Classifier learns to predict the majority class in the training data. <u>Question</u>: what's the estimate of accuracy of LOO-CV?
- <u>Answer</u>: 0% ! A complete break down

- Leave-One-Out CV should be the least conservative, less variant estimate, but ...
- There is evidence that LOO-CV is not always the best [Kohavi, R. 1995]
- Example: 25 positives and 25 negative samples. Classifier learns to predict the majority class in the training data. <u>Question</u>: what's the estimate of accuracy of LOO-CV?
- <u>Answer</u>: 0% ! A complete break down
- Leave-one-Out forces an extreme difference between the class distribution in the original dataset and each test set
- Test sets without any samples from some classes maybe problematic.

Stratified Cross-Validation

- Randomly split to folds, while maintaining the distribution of the classes as close as possible to the one in the full dataset
- Highly recommended when some classes are rare
- **Suggestion**: All folds should have at least 1 sample from each class, thus <u>K is at most #samples-of-rarest-class</u>
- For regression, similar ideas should be applied (e.g., partition to folds with the same variance as the original dataset)

Personal Advise

- For a **single learning** method, when sample size is low and computational time is no issue use:
 - Stratified, Repeated K-fold Cross Validation
 - K = #samples-of-rarest-class (each fold has samples from all classes)
Pitfalls of Cross-Validation

Golden Rule:

Simulate: learn model from D, make operational, test on new samples D'

- Scale data so that each variable has zero mean and standard deviation of 1
- Remove variables independent of the target
- *(model, estimate)* = Cross-Validation(*f*, **D**)
- Claim to the reviewers that <u>model</u> is expected to have loss <u>estimate</u>

Pitfalls of Cross-Validation

Golden Rule:

Simulate: learn model from *D*, make operational, test on new samples D'

It peeks in the test cases!!!

- Scale data so that each variable has zero mean and standard deviation of 1
- o Remove variables independent of the target
- *(model, estimate)* = Cross-Validation(*f*, **D**)
- Claim to the reviewers that <u>model</u> is expected to have loss <u>estimate</u>

Pitfalls of Cross-Validation

Golden Rule:

Simulate: learn model from *D*, make operational, test on new samples D'

It peeks in the test cases!!!

- Scale data so that each variable has zero mean and standard deviation of 1
- o Remove variables independent of the taraet
- o (model, estime Scaling and variable selection is
- o Claim to the <u>estimate</u>

part of the learning method; to have loss they also have to be CVed

Correct CV

Algorithm 1 CV $(f, D = \{F_1, \dots, F_K\})$: Basic K-Fold Cross-Validation

Input: Learning method f, Data matrix $D = \{\langle x_j, y_j \rangle\}_{j=1}^N$ partitioned into about equally-sized folds F_i **Output**: Model M, Performance estimation L_{CV} , out-of-sample predictions Π on all folds 1: Define $D \setminus i \leftarrow D \setminus F_i$ 2: // Obtain the indexes of each fold 3: $I_i \leftarrow indexes(F_i)$ 4: // Final Model trained by f on all available data

5: $M \leftarrow f(D)$ 6: // Performance estimation: learn from D_{i} , estimate on F_i

7: $L_{CV} \leftarrow \frac{1}{K} \sum_{i=1}^{K} l(y(I_i), f(F_i, D_{\setminus i}))$ 8: // Out-of-sample predictions are used by bias-correction methods 9: Collect out-of-sample predictions $\Pi = [f(F_1, D_{\setminus 1}); \cdots; f(F_K, D_{\setminus K})]$ 10: **Return** $\langle M, L_{CV}, \Pi \rangle$

The learner *f* is creating a new function (model) with several steps. This is easier in languages where functions are first class objects, e.g., R, Matlab, python, but not C

f(Data Train)

- 1. Normalize Train, store normalizing parameters normpar
- 2. Identify the most important variableset \mathbf{S} from \mathbf{Train}
- 3. Project Train on S only
- 4. Learn a decision tree TR from Train data
- 5. Return a model M(x)
 - Normalizes x according to normpar
 - \circ Retain only variables S from vector ${\bf x}$
 - \circ Return the output of TR on (modified vector) \mathbf{x}

Correct CV

Learning function containing *all steps*

f(Data Train)

- 1. Normalize Train, store normalizing parameters normpar
- 2. Identify the most important variableset \mathbf{S} from \mathbf{Train}
- 3. Project Train on S only
- 4. Learn a decision tree TR from Train data
- 5. Return a model M(x)
 - Normalizes x according to normpar
 - o Retain only variables S from vector x
 - \circ Return the output of TR on (modified vector) \mathbf{x}

Algorithm 1 CV $(f, D = \{F_1, \dots, F_K\})$: Basic K-Fold Cross-Validation

Input: Learning method f, Data matrix $D = \{\langle x_j, y_j \rangle\}_{j=1}^N$ partitioned into about equally-sized folds F_i **Output**: Model M, Performance estimation L_{CV} , out-of-sample predictions Π on all folds 1: Define $D_{\setminus i} \leftarrow D \setminus F_i$ 2: // Obtain the indexes of each fold 3: $I_i \leftarrow indexes(F_i)$ 4: // Final Model trained by f on all available data 5: $M \leftarrow f(D)$

6: // Performance estimation: learn from D_{i} , estimate on F_i

7: $L_{CV} \leftarrow \frac{1}{K} \sum_{i=1}^{K} l(y(I_i), f(F_i, D_{\setminus i}))$ 8: // Out-of-sample predictions are used by bias-correction methods 9: Collect out-of-sample predictions $\Pi = [f(F_1, D_{\setminus 1}); \cdots; f(F_K, D_{\setminus K})]$

10: **Return** $\langle M, L_{CV}, \Pi \rangle$

The learner *f* is creating a new function (model) with several steps. This is easier in languages where functions are first class objects, e.g., R, Matlab, python, but not C

Correct CV

Learning function containing *all steps*

- 1. Normalize Train, store normalizing parameters normpar
- 2. Identify the most important variableset \mathbf{S} from \mathbf{Train}
- 3. Project Train on S only
- 4. Learn a decision tree TR from Train data
- Return a model M(x)
- Normalizes **x** according to **normpar**
- o Retain only variables S from vector **x**
- \circ Return the output of TR on (modified vector) \mathbf{x}

Algorithm 1 CV $(f, D = \{F_1, \dots, F_K\})$: Basic K-Fold Cross-Validation

Input: Learning method f, Data matrix $D = \{\langle x_j, y_j \rangle\}_{j=1}^N$ partitioned into about equally-sized folds F_i **Output**: Model M, Performance estimation L_{CV} , out-of-sample predictions Π on all folds

1: Define $D_{i} \leftarrow D \setminus F_i$

2: // Obtain the indexes of each fold 2: $L_{indexes}(E_{i})$

3: $I_i \leftarrow indexes(F_i)$

- 4: // Final Model trained by f on all available data
- 5: $M \leftarrow f(D)$ 6: // Performance estimation: learn from D_{i} , estimate on F_i

7: $L_{CV} \leftarrow \frac{1}{K} \sum_{i=1}^{K} l(y(I_i), f(F_i, D_{\setminus i}))$ 8: // Out-of-sample predictions are used by bias-correction methods

9: Collect out-of-sample predictions $\Pi = [f(F_1, D_{\backslash 1}); \cdots; f(F_K, D_{\backslash K})]$ 10: **Return** $\langle M, L_{CV}, \Pi \rangle$

> Learnt Model applying all steps

The learner *f* is creating a new function (model) with several steps. This is easier in languages where functions are first class objects, e.g., R, Matlab, python, but not C

Learning Method *f*

Estimation Protocol

Example of Overfitting due to Bad CV

Consider a scenario with N = 50 samples in two equal-sized classes, and p = 5000 quantitative predictors (standard Gaussian) that are independent of the class labels. The true (test) error rate of any classifier is 50%.

Wrong way

- Choose 100
 predictors having
 highest correlation
 with the class
 labels
- Use a 1-nearest neighbor classifier, based on just these 100 predictors
- 3. Average CV error of 1-KK rate on 50 simulations: 3%!!!

Right way

- 1. Divide the samples into K cross-validation folds (groups) at random.
- 2. For each fold k = 1, 2, . . . ,K
 - a) Find a subset of "good" predictors that show fairly strong (univariate) correlation with the class labels, using all of the samples except those in fold k.
 - b) Using just this subset of predictors, build a multivariate classifier, using all of the samples except those in fold k.
 - c) Use the classifier to predict the class labels for the samples in fold k.

Correlations of Selected Predictors with Outcome

Hastie, Tibshirani, Friedman, Elements of Statistical Learning, p. 245, second edition

Summary

Always **follow the Golden Rule** in performance estimation.

All steps of the analysis are **part of the learning method**, not just the classifier (regressor, etc.)

The final model applies **all** what was **learnt** in all steps of the analysis **to new data**

Perspective shift from estimating the performance of a model, to **estimating the performance of a learning method**

Use **Stratified**, **Repeated K-fold Cross Validation**, K = #samples-ofrarest-class for small sample sizes and a single learning method

Summary

Always **follow the Golden Rule** in performance estimation.

Let's all **stop** overfitting (overestimating performance) **All steps** of the analysis are **part of the learning method**, not just the classifier (regressor, etc.)

The final model applies **all** what was **learnt** in all steps of the analysis **to new data**

Perspective shift from estimating the performance of a model, to **estimating the performance of a learning method**

Use **Stratified**, **Repeated K-fold Cross Validation**, K = #samples-ofrarest-class for small sample sizes and a single learning method

References

- (2018, September 4).Automated machine learning. Retrieved September 7, 2018, from <u>https://en.wikipedia.org/wiki/Automated machine lear</u> <u>ning</u>
- Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. *Ijcai*, 14, 1137–1145.
- Hastie, Tibshirani, Friedman. Elements of Statistical Learning, p. 245, second edition.

End of Part I